Soient un nombre réel et un entier strictement positif. Nous définissons quatre exposants d’approximation diophantienne, qui viennent compléter les exposants et définis par Mahler et Koksma. Nous calculons leurs six valeurs lorsque et est un nombre réel dont le développement en fraction continue est, aux premiers termes près, une suite sturmienne d’entiers positifs. En particulier, nous obtenons l’exposant exact d’approximation d’une telle fraction continue par des nombres quadratiques
Let be a real number and let be a positive integer. We define four exponents of Diophantine approximation, which complement the exponents and defined by Mahler and Koksma. We calculate their six values when and is a real number whose continued fraction expansion coincides with some Sturmian sequence of positive integers, up to the initial terms. In particular, we obtain the exact exponent of approximation to such a continued fraction by quadratic surds.
Keywords: Diophantine approximation, Sturmian sequence, simultaneous approximation, transcendence measure
Mot clés : approximation diophantienne, suite sturmienne, approximation simultanée, mesure de transcendance
@article{AIF_2005__55_3_773_0, author = {Bugeaud, Yann and Laurent, Michel}, title = {Exponents of {Diophantine} {Approximation} and {Sturmian} {Continued} {Fractions}}, journal = {Annales de l'Institut Fourier}, pages = {773--804}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {3}, year = {2005}, doi = {10.5802/aif.2114}, mrnumber = {2149403}, zbl = {1155.11333}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2114/} }
TY - JOUR AU - Bugeaud, Yann AU - Laurent, Michel TI - Exponents of Diophantine Approximation and Sturmian Continued Fractions JO - Annales de l'Institut Fourier PY - 2005 SP - 773 EP - 804 VL - 55 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2114/ DO - 10.5802/aif.2114 LA - en ID - AIF_2005__55_3_773_0 ER -
%0 Journal Article %A Bugeaud, Yann %A Laurent, Michel %T Exponents of Diophantine Approximation and Sturmian Continued Fractions %J Annales de l'Institut Fourier %D 2005 %P 773-804 %V 55 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2114/ %R 10.5802/aif.2114 %G en %F AIF_2005__55_3_773_0
Bugeaud, Yann; Laurent, Michel. Exponents of Diophantine Approximation and Sturmian Continued Fractions. Annales de l'Institut Fourier, Tome 55 (2005) no. 3, pp. 773-804. doi : 10.5802/aif.2114. http://www.numdam.org/articles/10.5802/aif.2114/
[1] A remarkable class of continued fractions, Proc. Amer. Math. Soc., Volume 65 (1977), pp. 194-198 | DOI | MR | Zbl
[2] Transcendence of Sturmian or morphic continued fractions, J. Number Theory, Volume 91 (2001), pp. 39-66 | DOI | MR | Zbl
[3] A Gel'fond type criterion in degree two, Acta Arith., Volume 11 (2004), pp. 97-103 | MR | Zbl
[4] Diophantine approximation and Hausdorff dimension, Proc. London Math. Soc., Volume 21 (1970), pp. 1-11 | DOI | MR | Zbl
[5] On approximation with algebraic numbers of bounded degree, Mathematika, Volume 23 (1976), pp. 18-31 | DOI | MR | Zbl
[6] Application of the Hausdorff dimension in the theory of Diophantine approximations, Acta Arith., Volume 42 (1983), pp. 219-253 | MR | Zbl
[7] On the approximation by algebraic numbers with bounded degree, Algebraic number theory and Diophantine analysis (Graz, 1998) (2000), pp. 47-53 | Zbl
[8] Approximation par des nombres algébriques, J. Number Theory, Volume 84 (2000), pp. 15-33 | DOI | MR | Zbl
[9] Mahler's classification of numbers compared with Koksma's, Acta Arith., Volume 110 (2003), pp. 89-105 | DOI | MR | Zbl
[10] Approximation by algebraic numbers, Cambridge Tracts in Math., 160, Cambridge University Press, 2004 | MR | Zbl
[11] Approximation d'un nombre réel par des nombres algébriques de degré donné, Acta Arith., Volume 93 (2000), pp. 77-86 | MR | Zbl
[12] Limit values of the recurrence quotient of Sturmian sequences, Theor. Comput. Sci., Volume 218 (1999), pp. 3-12 | DOI | MR | Zbl
[13] Approximation to real numbers by quadratic irrationals, Acta Arith., Volume 13 (1967), pp. 169-176 | MR | Zbl
[14] Approximation to real numbers by algebraic integers, Acta Arith., Volume 15 (1969), pp. 393-416 | MR | Zbl
[15] Dirichlet's theorem on Diophantine approximation (Symposia Mathematica (INDAM, Rome, 1968/69)), Volume IV (1970), pp. 113-132 | Zbl
[16] A series and its associated continued fraction, Proc. Amer. Math. Soc., Volume 63 (1977), pp. 29-32 | DOI | MR | Zbl
[17] The geometry of fractal sets, Cambridge Tracts in Mathematics, 85, Cambridge University Press, 1985 | MR | Zbl
[18] Zur metrischen Theorie der diophantischen Approximationen, Prace Mat.-Fiz., Volume 36 (1928/29), pp. 91-106 | JFM
[19] Zum Khintchineschen `Übertragungssatz', Trav. Inst. Math. Tbilissi, Volume 3 (1938), pp. 193-212 | Zbl
[20] Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen, Monats. Math. Phys., Volume 48 (1939), pp. 176-189 | DOI | JFM | MR | Zbl
[21] Some remarks on the approximation of complex numbers by algebraic numbers, Proceedings of the 2nd Panhellenic Conference in Algebra and Number Theory (Thessaloniki, 1998) (Bull. Greek Math. Soc.), Volume 42 (1999), pp. 49-57 | Zbl
[22] Simultaneous rational approximation to the successive powers of a real number, Indag. Math., Volume 11 (2003), pp. 45-53 | MR | Zbl
[23] Zur Approximation der Exponentialfunktionen und des Logarithmus. I, II, J. reine angew. Math., Volume 166 (1932), pp. 118-150 | Zbl
[24] Approximations diophantiennes des nombres sturmiens, J. Théor. Nombres Bordeaux, Volume 14 (2002), pp. 613-628 | DOI | Numdam | MR | Zbl
[25] Continued Fractions, World Scientific, Singapore, 1992 | MR | Zbl
[26] Approximation simultanée d'un nombre et son carré, C. R. Acad. Sci. Paris, Volume 336 (2003), pp. 1-6 | MR | Zbl
[27] Approximation to real numbers by cubic algebraic numbers, I, Proc. London Math. Soc., Volume 88 (2004), pp. 42-62 | DOI | MR | Zbl
[28] Approximation to real numbers by cubic algebraic numbers, II, Ann. of Math., Volume 158 (2003), pp. 1081-1087 | DOI | MR | Zbl
[29] Diophantine approximation in small degree (CRM Proceedings and Lecture Notes), Volume 36 (2004), pp. 269-285 | Zbl
[30] Mahler's problem in metric number theory, 25, Amer. Math. Soc., Providence, R.I., 1969 | MR | Zbl
[31] Approximation mit algebraischen Zahlen beschränkten Grades, J. reine angew. Math., Volume 206 (1961), pp. 67-77 | MR | Zbl
Cité par Sources :