Il y a un ensemble ouvert de triangles rectangles tels que pour chaque triangle irrationnel dans cet ensemble : (i) les trajectoires du billard sont denses dans l'espace des phases, (ii) il y a une seule trajectoire perpendiculaire du billard, qui est non singulière, et qui n'est pas périodique, (iii) les trajectoires perpendiculaires qui sont périodiques remplissent la surface invariante correspondante.
There is an open set of right triangles such that for each irrational triangle in this set (i) periodic billiards orbits are dense in the phase space, (ii) there is a unique nonsingular perpendicular billiard orbit which is not periodic, and (iii) the perpendicular periodic orbits fill the corresponding invariant surface.
Keywords: Polygonal billiard, periodic orbits, symmetries
Mot clés : billiard polygonal, trajectoire périodique, symétries
@article{AIF_2005__55_1_29_0, author = {Troubetzkoy, Serge}, title = {Periodic billiard orbits in right triangles}, journal = {Annales de l'Institut Fourier}, pages = {29--46}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {1}, year = {2005}, doi = {10.5802/aif.2088}, mrnumber = {2141287}, zbl = {1063.37022}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2088/} }
TY - JOUR AU - Troubetzkoy, Serge TI - Periodic billiard orbits in right triangles JO - Annales de l'Institut Fourier PY - 2005 SP - 29 EP - 46 VL - 55 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2088/ DO - 10.5802/aif.2088 LA - en ID - AIF_2005__55_1_29_0 ER -
Troubetzkoy, Serge. Periodic billiard orbits in right triangles. Annales de l'Institut Fourier, Tome 55 (2005) no. 1, pp. 29-46. doi : 10.5802/aif.2088. http://www.numdam.org/articles/10.5802/aif.2088/
[BGKT] Periodic billiard orbits are dense in rational polygons, Trans. AMS, Volume 350 (1998), pp. 3523-3535 | DOI | MR | Zbl
[Bo] Billiards and rational periodic directions in polygons, Amer. Math. Monthly, Volume 99 (1992), pp. 522-529 | DOI | MR | Zbl
[CHK] Periodic trajectories in right triangle billiards, Phys. Rev., Volume E52 (1995), pp. 2066-2071 | MR
[Ga] Non-periodic and not everywhere dense billiard trajectories in convex polygons and polyhedrons, Comm. Math. Phys., Volume 91 (1983), pp. 187-211 | DOI | MR | Zbl
[GSV] Periodic billiard trajectories in polygons: generating mechanisms, Russian Math. Surveys, Volume 47 (1992), pp. 5-80 | DOI | MR | Zbl
[GT] Directional flows and strong recurrence for polygonal billiards, Proceedings of the International Congress of Dynamical Systems (1996), pp. 21-45 | Zbl
[Gu1] Billiard in polygons, Physica, Volume D19 (1986), pp. 311-333 | MR | Zbl
[Gu2] Billiard in polygons: survey of recent results, J. Stat. Phys., Volume 83 (1996), pp. 7-26 | DOI | MR | Zbl
[GZ] Periodic billiard trajectories in right triangles and right-angled tetrahedra, Regular and Chaotic Dynamics, Volume 8 (2003), pp. 29-44 | DOI | MR | Zbl
[KH] Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, 1995 | MR | Zbl
[Ma] Closed trajectories of a quadratic differential with an application to billiards, Duke Math. J., Volume 53 (1986), pp. 307-313 | MR | Zbl
[MT] Rational billiards and flat structures (Handbook of dynamical systems), Volume 1A (2002), pp. 1015-1089 | Zbl
[Ru] Periodic orbits in triangular billiards, Acta Physica Polonica, Volume B22 (1991), pp. 955-981
[ST] Inhomogeneous Diophantine approximation and angular recurrence for polygonal billiards, Math. Sb., Volume 194 (2003), pp. 295-309 | DOI | MR | Zbl
[Ta] Billiards, Panoramas et Synthèses, Soc. Math. France, 1995 | MR | Zbl
[Tr] Recurrence and periodic billiard orbits in polygons, Regul. Chaotic Dyn., Volume 9 (2004), pp. 1-12 | DOI | MR | Zbl
Cité par Sources :