Étant donné un corps quadratique imaginaire , notons son nombre de classes. Nous montrons qu’il existe une constante telle que pour assez grand, au moins des fonctions distinctes ne s’annulent pas au point central .
Let be an imaginary quadratic field, and denote by its class number. It is shown that there is an absolute constant such that for sufficiently large at least of the distinct -functions do not vanish at the central point .
Keywords: non-vanishing results, $L$-functions, imaginary quadratic fields, mollifier
Mot clés : théorèmes de non-annulation, fonctions $L$, corps quadratique imaginaire, fonction de mollification
@article{AIF_2004__54_4_831_0, author = {Blomer, Valentin}, title = {Non-vanishing of class group $L$-functions at the central point}, journal = {Annales de l'Institut Fourier}, pages = {831--847}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {4}, year = {2004}, doi = {10.5802/aif.2035}, mrnumber = {2111013}, zbl = {1063.11040}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2035/} }
TY - JOUR AU - Blomer, Valentin TI - Non-vanishing of class group $L$-functions at the central point JO - Annales de l'Institut Fourier PY - 2004 SP - 831 EP - 847 VL - 54 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2035/ DO - 10.5802/aif.2035 LA - en ID - AIF_2004__54_4_831_0 ER -
%0 Journal Article %A Blomer, Valentin %T Non-vanishing of class group $L$-functions at the central point %J Annales de l'Institut Fourier %D 2004 %P 831-847 %V 54 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2035/ %R 10.5802/aif.2035 %G en %F AIF_2004__54_4_831_0
Blomer, Valentin. Non-vanishing of class group $L$-functions at the central point. Annales de l'Institut Fourier, Tome 54 (2004) no. 4, pp. 831-847. doi : 10.5802/aif.2035. http://www.numdam.org/articles/10.5802/aif.2035/
[1] Eisenstein series on the metaplectic group and nonvanishing theorems for automorphic -functions and their derivatives, Ann. of Math (2), Volume 131 (1990), pp. 53-127 | MR | Zbl
[2] On character sums and L-series, Proc. London Math. Soc (2), Volume 12 (1962), pp. 193-206 | MR | Zbl
[3] The nonvanishing of Rankin-Selberg zeta-functions at special points, Contemp. Math, Volume 53 (1986), pp. 51-95 | MR | Zbl
[4] Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math, Volume 112 (1988), pp. 73-90 | MR | Zbl
[5] Class group -functions, Duke Math. J, Volume 79 (1995), pp. 1-56 | MR | Zbl
[6] Low-lying zeros of dihedral -functions, Duke Math. J, Volume 116 (2003), pp. 189-217 | MR | Zbl
[7] The non-vanishing of central values of automorphic -functions and the Landau-Siegel zero, Isr. J. Math, Volume 120 (2000), pp. 155-177 | MR | Zbl
[8] Zeros of zeta-functions and symmetry, Bull. AMS, Volume 36 (1999), pp. 1-26 | MR | Zbl
[9] Mollification of the fourth moment of automorphic -functions and arithmetic applications, Invent. Math, Volume 142 (2000), pp. 95-151 | MR | Zbl
[10] Non-vanishing of high derivatives of automorphic -functions at the center of the critical strip, J. Reine Angew. Math, Volume 526 (2000), pp. 1-34 | MR | Zbl
[11] Mean values of derivatives of modular -series, Ann. of Math (2), Volume 133 (1991), pp. 447-475 | MR | Zbl
[12] Non-vanishing of -functions and applications, Progress in Mathematics, 157, Birkhäuser, Basel, 1997 | MR | Zbl
[13] Averages over twisted elliptic -functions, Acta Arith, Volume 80 (1997), pp. 149-163 | EuDML | MR | Zbl
[14] Elementary methods in the theory of -functions II, Acta Arith, Volume 31 (1976), pp. 273-306 | MR | Zbl
[15] Nonvanishing of -functions for , Invent. Math, Volume 97 (1989), pp. 383-401 | MR | Zbl
[16] On modular forms of half-integral weight, Ann of Math (2), Volume 97 (1973), pp. 440-481 | MR | Zbl
[17] Non-vanishing of quadratic Dirichlet -functions at , Ann. of Math (2), Volume 152 (2000), pp. 447-488 | EuDML | Zbl
[18] Sur le coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl., Volume 60 (1981), pp. 375-484 | MR | Zbl
Cité par Sources :