Il est connu que les générateurs de l’idéal annulateur d’une variété torique projective de dimension , plongée par les sections globales d’un fibré en droites normalement engendré, sont de degré au plus . Nous caractérisons les variétés projectives de dimension dont un générateur au moins de l’idéal annulateur doit être de degré .
It is known that generators of ideals defining projective toric varieties of dimension embedded by global sections of normally generated line bundles have degree at most . We characterize projective toric varieties of dimension whose defining ideals must have elements of degree as generators.
Keywords: toric varieties, convex polytopes, generators of ideals
Mot clés : variétés toriques, polytopes convexes, générateurs d'idéaux
@article{AIF_2003__53_7_2243_0, author = {Ogata, Shoetsu}, title = {On projective toric varieties whose defining ideals have minimal generators of the highest degree}, journal = {Annales de l'Institut Fourier}, pages = {2243--2255}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {7}, year = {2003}, doi = {10.5802/aif.2005}, mrnumber = {2044172}, zbl = {1069.14057}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2005/} }
TY - JOUR AU - Ogata, Shoetsu TI - On projective toric varieties whose defining ideals have minimal generators of the highest degree JO - Annales de l'Institut Fourier PY - 2003 SP - 2243 EP - 2255 VL - 53 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2005/ DO - 10.5802/aif.2005 LA - en ID - AIF_2003__53_7_2243_0 ER -
%0 Journal Article %A Ogata, Shoetsu %T On projective toric varieties whose defining ideals have minimal generators of the highest degree %J Annales de l'Institut Fourier %D 2003 %P 2243-2255 %V 53 %N 7 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2005/ %R 10.5802/aif.2005 %G en %F AIF_2003__53_7_2243_0
Ogata, Shoetsu. On projective toric varieties whose defining ideals have minimal generators of the highest degree. Annales de l'Institut Fourier, Tome 53 (2003) no. 7, pp. 2243-2255. doi : 10.5802/aif.2005. http://www.numdam.org/articles/10.5802/aif.2005/
[A] On the study of integral convex polytopes and toric varieties (2002) Master thesis, Tohoku University (Japanese)
[BGT] Normal polytopes, triangulations, and Koszul algebras, J. reine angew. Math, Volume 485 (1997), pp. 123-160 | MR | Zbl
[ES] Binomial ideals, Duke Math. J, Volume 84 (1996), pp. 1-45 | DOI | MR | Zbl
[EW] On the ampleness of invertible sheaves in complete projective toric varieties, Results in Mathematics, Volume 19 (1991), pp. 275-278 | MR | Zbl
[Fj] Defining Equations for Certain Types of Polarized Varieties, Complex Analysis and Algebraic Geometry (1977), pp. 165-173 | Zbl
[Fl] Introduction to Toric Varieties, Ann. of Math. Studies, No 131, Princeton Univ. Press, 1993 | MR | Zbl
[GL] A simple proof of Petri's Theorem on canonical curves, Geometry of Today, Giornate di Geometria (Roma, 1984), Volume vol. 60 (1985), pp. 129-142 | Zbl
[I] Commutative rings, Kiso Sugaku Algebra (Japanese), vol. 4, Iwanami Shoten, Tokyo, 1977 | MR
[K1] The number of moduli of families of curves on toric surfaces (1991) (thesis, Katholieke Universiteit te Nijmengen)
[K2] Generators for the ideal of a projectively embedded toric surfaces, Tohoku Math. J, Volume 45 (1993), pp. 385-392 | DOI | MR | Zbl
[K3] A criterion for the ideal of a projectively embedded toric surfaces to be generated by quadrics, Beiträger zur Algebra und Geometrie, Volume 34 (1993), pp. 57-62 | MR | Zbl
[M] Varieties defined by quadric equations, Questions on Algebraic Varieties (Corso CIME) (1969), pp. 30-100 | Zbl
[NO] On generators of ideals defining projective toric varieties, Manuscripta Math, Volume 108 (2002), pp. 33-42 | DOI | MR | Zbl
[Od] Convex Bodies and Algebraic Geometry, Ergebnisse der Math, 15, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1988 | MR | Zbl
[Og] Quadratic generation of ideals defining projective toric varieties, Kodai Math. J, Volume 26 (2003), pp. 137-146 | DOI | MR | Zbl
[S1] Gröbner bases and Convex Polytopes, University Lecture Series, Vol. 8, American Mathematics Society, Providence, RI, 1995 | MR | Zbl
[S2] Equations defining toric varieties, Algebraic Geometry (Santa Cruz, 1995) (Proc. Sympos. Pure Math), Volume 62 (1997), pp. 437-449 | Zbl
Cité par Sources :