Soit l’anneau des entiers d’un corps de nombres totalement réel de degré . Nous étudions un nombre premier fixé, la réduction modulo de l’espace de modules classifiant les -variétés abéliennes séparablement polarisées de dimension . Nous construisons une stratification schématique par les types du lieu de Rapoport et étudions sa relation avec la stratification par les pentes. En particulier, nous retrouvons les résultats principaux de Goren et Oort [J. Alg. Geom., 2000] sur les stratifications lorsque n’est pas ramifié dans . Nous démontrons également la conjecture de Grothendieck forte pour les espaces de modules dans certains cas, notamment lorsque est totalement ramifié dans .
Let be the ring of integers of a totally real field of degree . We study the reduction of the moduli space of separably polarized abelian -varieties of dimension modulo for a fixed prime . The invariants and related conditions for the objects in the moduli space are discussed. We construct a scheme-theoretic stratification by -types on the Rapoport locus and study the relation with the slope stratification. In particular, we recover the main results of Goren and Oort [J. Alg. Geom., 2000] on the stratifications when is unramified in . We also prove the strong Grothendieck conjecture for the moduli space in some restricted cases, particularly when is totally ramified in .
Keywords: Hilbert-Blumenthal varieties, Dieudonné modules, stratifications, deformations
Mot clés : variétés de Hilbert-Blumenthal, modules de Dieudonné, stratifications, déformations
@article{AIF_2003__53_7_2105_0, author = {Yu, Chia-Fu}, title = {On reduction of {Hilbert-Blumenthal} varieties}, journal = {Annales de l'Institut Fourier}, pages = {2105--2154}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {7}, year = {2003}, doi = {10.5802/aif.2002}, mrnumber = {2044169}, zbl = {02093468}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2002/} }
TY - JOUR AU - Yu, Chia-Fu TI - On reduction of Hilbert-Blumenthal varieties JO - Annales de l'Institut Fourier PY - 2003 SP - 2105 EP - 2154 VL - 53 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2002/ DO - 10.5802/aif.2002 LA - en ID - AIF_2003__53_7_2105_0 ER -
Yu, Chia-Fu. On reduction of Hilbert-Blumenthal varieties. Annales de l'Institut Fourier, Tome 53 (2003) no. 7, pp. 2105-2154. doi : 10.5802/aif.2002. http://www.numdam.org/articles/10.5802/aif.2002/
[BG] On the non-ordinary locus in Hilbert-Blumenthal surfaces, Math. Ann., Volume 313 (1999), pp. 475-506 | DOI | MR | Zbl
[C] Newton polygons as lattice points, Amer. J. Math., Volume 122 (2000), pp. 967-990 | MR | Zbl
[CN] Bad reduction of the Siegel moduli scheme of genus two with -level structure, Amer. J. Math., Volume 112 (1990), pp. 1003-1071 | DOI | MR | Zbl
[dJO] Purity of the stratification by Newton polygons, J. Amer. Math. Soc., Volume 13 (2000), pp. 209-241 | DOI | MR | Zbl
[DP] Singularités des espaces de modules de Hilbert en caractéristiques divisant le discriminant, Compositio Math., Volume 90 (1994), pp. 59-79 | Numdam | MR | Zbl
[GO] Stratifications of Hilbert modular varieties in positive characteristic, J. Algebraic Geom., Volume 9 (2000), pp. 111-154 | MR | Zbl
[Gr] Groupes de Barsotti-Tate et Cristaux de Dieudonné, Les Presses de l'Université de Montréal, 1974 | MR | Zbl
[K1] Isocrystal with additional structure, Compositio Math., Volume 56 (1985), pp. 201-220 | Numdam | MR | Zbl
[K2] Points on some Shimura varieties over finite fields, J. Amer. Math. Soc., Volume 5 (1992), pp. 373-444 | DOI | MR | Zbl
[LO] Moduli of Supersingular Abelian Varieties, Lecture Notes in Math, vol. 1680, Springer-Verlag, 1998 | MR | Zbl
[Me] The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lecture Notes in Math, 264, Springer-Verlag, 1972 | MR | Zbl
[Mu] Abelian Varieties, Oxford University Press, 1974 | Zbl
[N] An algorithm for computing moduli of abelian varieties, Ann. Math., Volume 101 (1975), pp. 499-509 | DOI | MR | Zbl
[NO] Moduli of abelian varieties, Ann. Math., Volume 112 (1980), pp. 413-439 | DOI | MR | Zbl
[O1] Moduli of abelian varieties and Newton polygons, C. R. Acad. Sci. Paris, Sér. I Math., Volume 312 (1991), pp. 385-389 | MR | Zbl
[O2] Newton polygons and formal groups: conjectures by Manin and Grothendieck, Ann. Math., Volume 152 (2000), pp. 183-206 | DOI | MR | Zbl
[O3] Newton Polygon strata in the moduli space of abelian varieties, Moduli of Abelian Varieties (Progress in Mathematics), Volume 195 (2001), pp. 417-440 | Zbl
[O4] Endomorphism algebras of abelian varieties, Algebraic geometry and commutative algebra, in honor of M. Nagata (1988), pp. 469-502 | MR | Zbl
[P] Arithmetic models for Hilbert modular varieties, Compositio Math., Volume 98 (1995), pp. 43-76 | Numdam | MR | Zbl
[R] Compactifications de l'espaces de modules de Hilbert-Blumenthal, Compositio Math., Volume 36 (1978), pp. 255-335 | Numdam | MR | Zbl
[RR] On the classification and specialization of F-isocrystals with additional structure, Compositio Math., Volume 103 (1996), pp. 153-181 | Numdam | MR | Zbl
[RZ] Period Spaces for -divisible groups, Ann. Math. Studies, 141, Princeton Univ. Press, 1996 | MR | Zbl
[S] Local fields, GTM, 67, Springer-Verlag, 1979 | MR | Zbl
[Y1] On the supersingular locus of Hilbert-Blumenthal 4-folds, J. Alg. Geom., Volume 12 (2003), pp. 653-698 | DOI | MR | Zbl
[Y2] Lifting abelian varieties with additional structures, Math. Z., Volume 242 (2002), pp. 427-441 | DOI | MR | Zbl
[Z1] Cartiertheorie kommutativer formaler Gruppen, Teubner-Texte Math., Teubner, Leipzig, 1984 | MR | Zbl
[Z2] The display of a formal -divisible groups, Cohomologies -adiques et applications arithmétiques (Astérisque), Volume 278 (2002), pp. 127-248 | Numdam | Zbl
[Z3] Isogenieklassen von Punkten von Shimuramannigfaltigkeiten mit Werten in einem endlichen Körper, Math. Nachr., Volume 112 (1983), pp. 103-124 | DOI | MR | Zbl
Cité par Sources :