Soit une variété algébrique définie sur un corps de caractéristique zéro . Soit un -torseur sous un tore. Nous calculons le groupe de Brauer de et nous en déduisons des conséquences arithmétiques pour quand est un corps de nombres.
Let be an algebraic variety defined over a field of characteristic , and let be an -torsor under a torus. We compute the Brauer group of . In the case of a number field we deduce results concerning the arithmetic of .
Keywords: Brauer group, Hasse principle, universal torsor
Mot clés : groupe de Brauer, principe de Hasse, torseur universel
@article{AIF_2003__53_7_1987_0, author = {Harari, David and Skorobogatov, Alexei N.}, title = {The {Brauer} group of torsors and its arithmetic applications}, journal = {Annales de l'Institut Fourier}, pages = {1987--2019}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {7}, year = {2003}, doi = {10.5802/aif.1998}, mrnumber = {2044165}, zbl = {02093464}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1998/} }
TY - JOUR AU - Harari, David AU - Skorobogatov, Alexei N. TI - The Brauer group of torsors and its arithmetic applications JO - Annales de l'Institut Fourier PY - 2003 SP - 1987 EP - 2019 VL - 53 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1998/ DO - 10.5802/aif.1998 LA - en ID - AIF_2003__53_7_1987_0 ER -
%0 Journal Article %A Harari, David %A Skorobogatov, Alexei N. %T The Brauer group of torsors and its arithmetic applications %J Annales de l'Institut Fourier %D 2003 %P 1987-2019 %V 53 %N 7 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1998/ %R 10.5802/aif.1998 %G en %F AIF_2003__53_7_1987_0
Harari, David; Skorobogatov, Alexei N. The Brauer group of torsors and its arithmetic applications. Annales de l'Institut Fourier, Tome 53 (2003) no. 7, pp. 1987-2019. doi : 10.5802/aif.1998. http://www.numdam.org/articles/10.5802/aif.1998/
[CF] Algebraic number theory (1967)
[CS00] Descent on fibrations over revisited, Math. Proc. Camb. Phil. Soc, Volume 128 (2000), pp. 383-393 | DOI | MR | Zbl
[CS77] La -équivalence sur les tores., Ann. Sci. École Norm. Sup., Volume 10 (1977), pp. 175-230 | Numdam | MR | Zbl
[CS87a] La descente sur les variétés rationnelles, II, Duke Math. J., Volume 54 (1987), pp. 375-492 | DOI | MR | Zbl
[CS87b] Principal homogeneous spaces under flasque tori; applications, J. Algebra, Volume 106 (1987), pp. 148-205 | DOI | MR | Zbl
[CSS87] Intersections of two quadrics and Châtelet surfaces. I., J. reine angew. Math., Volume 373 (1987), pp. 37-107 | MR | Zbl
[CSS87] Intersections of two quadrics and Châtelet surfaces. II., J. Reine Angew. Math., Volume 374 (1987), pp. 72-168 | MR | Zbl
[CT] Surfaces rationnelles fibrées en coniques de degré 4, Séminaire de Théorie des Nombres, Paris 1988-1989 (Progr. Math.), Volume 91 (1990), pp. 43-55 | Zbl
[EGA4] Éléments de géométrie algébrique IV. Étude locale des schémas et des morphismes de schémas (EGA), Publ. Math. IHES (1964-1967) | Numdam | Zbl
[G] Le groupe de Brauer. III. Exemples et compléments., Dix exposés sur la cohomologie des schémas (1968) | Zbl
[GHS] Families of rationally connected varieties, J. Amer. Math. Soc, Volume 16 (2003), pp. 57-67 | DOI | MR | Zbl
[H94] Méthode des fibrations et obstruction de Manin, Duke Math. J, Volume 75 (1994), pp. 221-260 | DOI | MR | Zbl
[H97] Flèches de spécialisation en cohomologie étale et applications arithmétiques, Bull. Soc. Math. France, Volume 125 (1997), pp. 143-166 | Numdam | MR | Zbl
[KST] Del Pezzo surfaces of degree four, Mém. Soc. Math. France, Volume 37 (1989) | Numdam | MR | Zbl
[M] Étale Cohomology, 33, Princeton Univ. Press, Princeton, 1980 | MR | Zbl
[S01] Torsors and rational points, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl
[S90] Arithmetic on certain quadric bundles of relative dimension. I., J. reine angew. Math, Volume 407 (1990), pp. 57-74 | DOI | MR | Zbl
[S96] Descent on fibrations over the projective line, Amer. J. Math, Volume 118 (1996), pp. 905-923 | DOI | MR | Zbl
[SD] Rational points on some pencils of conics with 6 singular fibres, Ann. Fac. Sci. Toulouse, Volume 8 (1999), pp. 331-341 | DOI | Numdam | MR | Zbl
[SS] Weak approximation for surfaces defined by two quadratic forms, Duke Math. J, Volume 63 (1991), pp. 517-536 | MR | Zbl
[V] Algebraic groups and their birational invariants, Translations of Mathematical Monographs, 179, Amer. Math. Soc., Providence, 1998 | MR | Zbl
Cité par Sources :