Supposons que est l’espace de Hardy du disque unité du plan complexe et une fonction intérieure. On donne des conditions pour qu’une suite de noyaux reproduisants normalisés dans l’espace modèle soit asymptotiquement proche d’une suite orthonormale. La question de la complétude est aussi étudiée.
Suppose is the Hardy space of the unit disc in the complex plane, while is an inner function. We give conditions for a sequence of normalized reproducing kernels in the model space to be asymptotically close to an orthonormal sequence. The completeness problem is also investigated.
Keywords: Hardy space, functional model, asymptotically orthornormal sequence
Mot clés : espace de Hardy, modèle fonctionnel, suite asymptotiquement orthonormale
@article{AIF_2003__53_5_1527_0, author = {Chalendar, Isabelle and Fricain, Emmanuel and Timotin, Dan}, title = {Functional models and asymptotically orthonormal sequences}, journal = {Annales de l'Institut Fourier}, pages = {1527--1549}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {5}, year = {2003}, doi = {10.5802/aif.1987}, mrnumber = {2032942}, zbl = {1060.47014}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1987/} }
TY - JOUR AU - Chalendar, Isabelle AU - Fricain, Emmanuel AU - Timotin, Dan TI - Functional models and asymptotically orthonormal sequences JO - Annales de l'Institut Fourier PY - 2003 SP - 1527 EP - 1549 VL - 53 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1987/ DO - 10.5802/aif.1987 LA - en ID - AIF_2003__53_5_1527_0 ER -
%0 Journal Article %A Chalendar, Isabelle %A Fricain, Emmanuel %A Timotin, Dan %T Functional models and asymptotically orthonormal sequences %J Annales de l'Institut Fourier %D 2003 %P 1527-1549 %V 53 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1987/ %R 10.5802/aif.1987 %G en %F AIF_2003__53_5_1527_0
Chalendar, Isabelle; Fricain, Emmanuel; Timotin, Dan. Functional models and asymptotically orthonormal sequences. Annales de l'Institut Fourier, Tome 53 (2003) no. 5, pp. 1527-1549. doi : 10.5802/aif.1987. http://www.numdam.org/articles/10.5802/aif.1987/
[1] Geometric properties of projections of reproducing kernels on -invariant subspaces of , Journal of Functional Analysis, Volume 161 (1999), pp. 397-417 | DOI | MR | Zbl
[2] One dimensional perturbations of restricted shifts, J. Analyse Math, Volume 25 (1972), pp. 169-191 | DOI | MR | Zbl
[3] Bases of reproducing kernels in model spaces, J. Operator Theory, Volume 46 (2001), pp. 517-543 | MR | Zbl
[4] Homeomorphic disks in the spectrum of , Indiana Univ. Math. J, Volume 39 (1990), pp. 961-983 | DOI | MR | Zbl
[5] Thin interpolating sequences and three algebras of bounded functions, Proc. Amer. Math. Soc, Volume 99 (1987), pp. 489-495 | DOI | MR | Zbl
[6] Real and Abstract Analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1969 | MR | Zbl
[7] Unconditional bases of exponentials and of reproducing kernels, Complex Analysis and Spectral Theory (Lecture Notes in Mathematics) (1981), pp. 214-335 | Zbl
[8] Gap and Density Theorems (Colloquium Publ.), Volume 26 (1940) | JFM | Zbl
[9] Treatise on the Shift Operator, Grundlehren der mathematischen Wissenschafte, vol. 273, Springer-Verlag, Berlin, 1986 | MR | Zbl
[10] Operators, Functions and Systems: An Easy Reading. Model Operators and Systems, Mathematical Surveys and Monographs, 93, Volume 2, American Mathematical Society, 2002 | MR | Zbl
[11] Tangential and approximate free interpolation, Analysis and partial differential equations (Lecture Notes in Pure and Applied. Math.) (1990), pp. 277-299 | Zbl
[12] Fourier Transforms in the Complex Domain, Colloquium Publ., vol. 19, Amer. Math. Soc., Providence, 1934 | Zbl
[13] Interpolating sequences for , Trans. Amer. Math. Soc, Volume 276 (1983), pp. 551-581 | MR | Zbl
[14] Harmonic Analysis of Operators on Hilbert Spaces, North-Holland Publishing Co., Amsterdam-London, 1970 | MR | Zbl
[15] Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang and D. Sarason, J. Operator Theory, Volume 7 (1982), pp. 209-218 | MR | Zbl
Cité par Sources :