Nous expliquerons comment de nouvelles solutions algébriques de la sixième équation de Painlevé proviennent des groupes complexes de réflexion, prolongeant les résultats de Hitchin et de Dubrovin--Mazzocco pour les groupes réels de réflexion. Le problème de trouver des formules explicites pour ces solutions sera traité ailleurs.
We will explain how some new algebraic solutions of the sixth Painlevé equation arise from complex reflection groups, thereby extending some results of Hitchin and Dubrovin-- Mazzocco for real reflection groups. The problem of finding explicit formulae for these solutions will be addressed elsewhere.
Keywords: Painlevé equations, isomonodromic deformations, non abelian cohomology, complex reflections
Mot clés : équations de Painlevé, déformations isomonodromiques, cohomologie non abélienne, réflections complexes
@article{AIF_2003__53_4_1009_0, author = {Boalch, Philip}, title = {Painlev\'e equations and complex reflections}, journal = {Annales de l'Institut Fourier}, pages = {1009--1022}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {4}, year = {2003}, doi = {10.5802/aif.1972}, mrnumber = {2033508}, zbl = {1081.34086}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1972/} }
TY - JOUR AU - Boalch, Philip TI - Painlevé equations and complex reflections JO - Annales de l'Institut Fourier PY - 2003 SP - 1009 EP - 1022 VL - 53 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1972/ DO - 10.5802/aif.1972 LA - en ID - AIF_2003__53_4_1009_0 ER -
Boalch, Philip. Painlevé equations and complex reflections. Annales de l'Institut Fourier, Tome 53 (2003) no. 4, pp. 1009-1022. doi : 10.5802/aif.1972. http://www.numdam.org/articles/10.5802/aif.1972/
[1] Symplectic manifolds and isomonodromic deformations, Adv. in Math, Volume 163 (2001), pp. 137-205 | DOI | MR | Zbl
[2] G-bundles, isomonodromy and quantum Weyl groups, Int. Math. Res. Not. (2002) no. 22, pp. 1129-1166 | DOI | MR | Zbl
[3] Towards spetses. I, Dedicated to the memory of Claude Chevalley (Transform. Groups), Volume 4, no 2-3 (1999), pp. 157-218 | Zbl
[4] Quantum coadjoint action, J. Amer. Math. Soc, Volume 5 (1992) no. 1, pp. 151-189 | DOI | MR | Zbl
[5] Algebraic and geometric isomonodromic deformations, J. Differential Geom., Volume 59 (2001) no. 1, pp. 33-85 | MR | Zbl
[6] Painlevé transcendents in two-dimensional topological field theory, The Painlevé property (1999), pp. 287-412 | Zbl
[7] Monodromy of certain Painlevé-VI transcendents and reflection groups, Invent. Math., Volume 141 (2000) no. 1, pp. 55-147 | DOI | MR | Zbl
[8] Frobenius manifolds, Gauge Theory and Symplectic Geometry, NATO ASI Series C: Maths \& Phys, vol. 488, Kluwer, 1995 | Zbl
[9] Poncelet polygons and the Painlevé equations, Geometry and analysis (Bombay, 1992) (Tata Inst. Fund. Res., Bombay), Volume MR 97d:32042 (1995), pp. 151-185 | Zbl
[10] Geometrical aspects of Schlesinger's equation, J. Geom. Phys., Volume 23 (1997) no. 3-4, pp. 287-300 | DOI | MR | Zbl
[11] Quartic curves and icosahedra, talk at Edinburgh, September (1998)
[12] Monodromy problem and the boundary condition for some Painlevé equations, Publ. Res. Inst. Math. Sci., Volume 18 (1982) no. 3, pp. 1137-1161 | DOI | MR | Zbl
[13] Monodromy preserving deformations of linear differential equations with rational coefficients II, Physica 2D (1981), pp. 407-448 | MR
[14] Density of monodromy actions on non-abelian cohomology (e-print, math.AG/0101223) | Zbl
[15] Finite unitary reflection groups, Canadian J. Math., Volume 6 (1954), pp. 274-304 | DOI | MR | Zbl
[16] Towards a Schubert calculus for complex reflection groups (Math. Proc. Camb. Phil. Soc., to appear, www.dpmms.cam.ac.uk/ bt219/hall.dvi.gz) | MR | Zbl
Cité par Sources :