Properties of non-hermitian quantum field theories
[Propriétés des théories des champs quantiques non hermitiens]
Annales de l'Institut Fourier, Tome 53 (2003) no. 4, pp. 997-1008.

Dans cet article, je traite des systèmes quantiques dont l’hamiltonien est non-hermitien mais dont les niveaux d’énergie sont tous réels et positifs. De telles théories doivent être symétriques sous 𝒞𝒫𝒯, mais pas sous 𝒫 et 𝒯 séparément. Récemment, des systèmes quantiques avec de telles propriétés ont été étudiés en détail. Dans cet article, j’étends ces résultats aux théories des champs quantiques. Parmi les systèmes dont je parle, se trouvent les théories -φ 4 et iφ 3 . Toutes ces théories ont des propriétés inattendues et remarquables. Je décris les fonctions de Green qui apparaissent dans ces théories et je présente de nouveaux résultats concernant les états liés, la renormalisation et les calculs non-perturbatifs.

In this paper I discuss quantum systems whose Hamiltonians are non-Hermitian but whose energy levels are all real and positive. Such theories are required to be symmetric under 𝒞𝒫𝒯, but not symmetric under 𝒫 and 𝒯 separately. Recently, quantum mechanical systems having such properties have been investigated in detail. In this paper I extend the results to quantum field theories. Among the systems that I discuss are -φ 4 and iφ 3 theories. These theories all have unexpected and remarkable properties. I discuss the Green’s functions for these theories and present new results regarding bound states, renormalization, and nonperturbative calculations.

DOI : 10.5802/aif.1971
Classification : 34M60, 34B24, 34B40, 34L10
Keywords: ${\mathcal {C}}{\mathcal {P}}{\mathcal {T}}$, non-hermitian
Mot clés : ${\mathcal {C}}{\mathcal {P}}{\mathcal {T}}$, non-hermitien
Bender, Carl M. 1

1 Washington University, Department of Physics, Campus Box 1105, St. Louis, MO 63130 (USA)
@article{AIF_2003__53_4_997_0,
     author = {Bender, Carl M.},
     title = {Properties of non-hermitian quantum field theories},
     journal = {Annales de l'Institut Fourier},
     pages = {997--1008},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {53},
     number = {4},
     year = {2003},
     doi = {10.5802/aif.1971},
     mrnumber = {2033507},
     zbl = {1069.81030},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.1971/}
}
TY  - JOUR
AU  - Bender, Carl M.
TI  - Properties of non-hermitian quantum field theories
JO  - Annales de l'Institut Fourier
PY  - 2003
SP  - 997
EP  - 1008
VL  - 53
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.1971/
DO  - 10.5802/aif.1971
LA  - en
ID  - AIF_2003__53_4_997_0
ER  - 
%0 Journal Article
%A Bender, Carl M.
%T Properties of non-hermitian quantum field theories
%J Annales de l'Institut Fourier
%D 2003
%P 997-1008
%V 53
%N 4
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.1971/
%R 10.5802/aif.1971
%G en
%F AIF_2003__53_4_997_0
Bender, Carl M. Properties of non-hermitian quantum field theories. Annales de l'Institut Fourier, Tome 53 (2003) no. 4, pp. 997-1008. doi : 10.5802/aif.1971. http://www.numdam.org/articles/10.5802/aif.1971/

[8] C. M. Bender; G. V. Dunne; P. N. Meisinger; M. \dSim\dsek Quantum Complex Henon-Heiles Potentials, Phys. Lett. A, Volume 281 (2001), pp. 311-316 | DOI | MR | Zbl

[1] R. F. Streater; A. S. Wightman PCT, Spin \& Statistics and all that, Benjamin, New York, 1964 | MR | Zbl

[2] C. M. Bender; K. A. Milton; S. S. Pinsky; L. M. Simmons Jr. A New Perturbative Approach to Nonlinear Problems, J. Math. Phys, Volume 30 (1989), pp. 1447-1455 | DOI | MR | Zbl

[3] C. M. Bender; S. Boettcher Real Spectra in Non-Hermitian hamiltonians Having PT Symmetry, Phys. Rev. Lett., Volume 80 (1998), pp. 5243-5246 | DOI | MR | Zbl

[4] C. M. Bender; S. Boettcher; P. N. Meisinger PT-Symmetric Quantum Mechanics, J. Math. Phys., Volume 40 (1999), pp. 2201-2229 | DOI | MR | Zbl

[4] F. Pham; E. Delabaere Eigenvalues of complex Hamiltonians with PT-symmetry, Phys. Lett. A, Volume 250 (1998), pp. 29-32 | DOI | MR

[5] P. Dorey; C. Dunning; R. Tateo The ODE/IM correspondence PT-symmetric quantum mechanics, J. Phys. A, Math. Gen., Volume 34 (2002), p. 391-400 and 5679--5704 | MR

[5] K. C. Shin On the reality of the eigenvalues for a class of PT-symmetric oscillators, Comm. Math. Phys., Volume 229 (2002), pp. 543-564 | DOI | MR | Zbl

[6] C. M. Bender; P. N. Meisinger; H. Yang Calculation of the One-Point Green's Function for a -gphi 4 Quantum Field Theory, Phys. Rev. D, Volume 63 (2001), p. 45001-1--45001-10 | DOI

[7] C. M. Bender; S. Boettcher; H. F. Jones; P. N. Meisinger; M. \dSim\dsek Bound States of Non-Hermitian Quantum Field Theories, Phys. Lett. A, Volume 291 (2001), pp. 197-202 | DOI | MR | Zbl

[9] C. M. Bender; S. Boettcher; P. N. Meisinger; Q. Wang Two-Point Green's Function in PT-Symmetric Theories, Phys. Lett. A, Volume 302 (2002), pp. 286-290 | DOI | MR | Zbl

[10] C. M. Bender; D. C. Brody; H. F. Jones Complex Extension of Quantum Mechanics, Volume quant-ph 0208076 (2002) | MR

[11] C. M. Bender; M. V. Berry; A. Mandilara Generalized 𝒫𝒯 Symmetry and Real Spectra, J. Phys. A, Math. Gen., Volume 35 (2002), pp. 467-471 | DOI | MR | Zbl

[11] G. S. Japaridze Space of state vectors in PT-symmetric quantum mechanics, J. Phys. A, Volume 35 (2002), pp. 1709-1718 | DOI | MR | Zbl

Cité par Sources :