Homology of gaussian groups
[Homologie des groupes gaussiens]
Annales de l'Institut Fourier, Tome 53 (2003) no. 2, pp. 489-540.

Nous décrivons de nouvelles méthodes combinatoires fournissant des résolutions explicites du module trivial par des G-modules libres lorsque G est le groupe de fractions d’un monoïde possédant suffisamment de ppcm (“monoïde localement gaussien”), et donc, permettant de calculer l’homologie de G. Nos constructions s’appliquent en particulier à tous les groupes d’Artin–Tits de type de Coexeter fini. D’un point de vue technique, les démonstrations reposent sur les propriétés des ppcm dans un monoïde.

We describe new combinatorial methods for constructing explicit free resolutions of by G-modules when G is a group of fractions of a monoid where enough lest common multiples exist (“locally Gaussian monoid”), and therefore, for computing the homology of G. Our constructions apply in particular to all Artin-Tits groups of finite Coexter type. Technically, the proofs rely on the properties of least common multiples in a monoid.

DOI : 10.5802/aif.1951
Classification : 20J06, 18G35, 20M50, 20F36
Keywords: free resolution, finite resolution, homology, contacting homotopy, braid groups, Artin groups
Mot clés : résolution libre, résolution finie, homologie, homotopie de contact, groupes de tresses, groupes d'Artin
Dehornoy, Patrick 1 ; Lafont, Yves 2

1 Université de Caen, Laboratoire de Mathématiques Nicolas Oresme, 14032 Caen (France)
2 Institut Mathématique de Luminy, 163 avenue de Luminy, 13288 Marseille Cedex 9 (France)
@article{AIF_2003__53_2_489_0,
     author = {Dehornoy, Patrick and Lafont, Yves},
     title = {Homology of gaussian groups},
     journal = {Annales de l'Institut Fourier},
     pages = {489--540},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {53},
     number = {2},
     year = {2003},
     doi = {10.5802/aif.1951},
     mrnumber = {1990005},
     zbl = {1100.20036},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.1951/}
}
TY  - JOUR
AU  - Dehornoy, Patrick
AU  - Lafont, Yves
TI  - Homology of gaussian groups
JO  - Annales de l'Institut Fourier
PY  - 2003
SP  - 489
EP  - 540
VL  - 53
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.1951/
DO  - 10.5802/aif.1951
LA  - en
ID  - AIF_2003__53_2_489_0
ER  - 
%0 Journal Article
%A Dehornoy, Patrick
%A Lafont, Yves
%T Homology of gaussian groups
%J Annales de l'Institut Fourier
%D 2003
%P 489-540
%V 53
%N 2
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.1951/
%R 10.5802/aif.1951
%G en
%F AIF_2003__53_2_489_0
Dehornoy, Patrick; Lafont, Yves. Homology of gaussian groups. Annales de l'Institut Fourier, Tome 53 (2003) no. 2, pp. 489-540. doi : 10.5802/aif.1951. http://www.numdam.org/articles/10.5802/aif.1951/

[1] S.I. Adyan Fragments of the word Delta in a braid group, Mat. Zam. Acad. Sci. SSSR ; transl. Math. Notes Acad. Sci. USSR, Volume 36 ; 36 (1984 ; 1984) no. 1 ; 1, p. 25-34 ; 505-510 | MR | Zbl

[2] J. Altobelli; R. Charney A geometric rational form for Artin groups of FC type, Geometriae Dedicata, Volume 79 (2000), pp. 277-289 | DOI | MR | Zbl

[3] V.I. Arnold The cohomology ring of the colored braid group, Mat. Zametki, Volume 5 (1969), pp. 227-231 | MR | Zbl

[4] V.I. Arnold Toplogical invariants of algebraic functions II, Funkt. Anal. Appl., Volume 4 (1970), pp. 91-98 | DOI | MR | Zbl

[5] D. Bessis The dual braid monoid (Preprint) | Numdam | MR

[6] M. Bestvina Non-positively curved aspects of Artin groups of finite type, Geometry \& Topology, Volume 3 (1999), pp. 269-302 | DOI | MR | Zbl

[7] J. Birman; K.H. Ko; S.J. Lee A new approach to the word problem in the braid groups, Advances in Math., Volume 139 (1998) no. 2, pp. 322-353 | DOI | MR | Zbl

[8] E. Brieskorn Sur les groupes de tresses (d'après V.I. Arnold), Sém. Bourbaki, exp. no 401 (1971) (Springer Lect. Notes in Math.), Volume 317 (1973), pp. 21-44 | Numdam | Zbl

[9] E. Brieskorn; K. Saito Artin-Gruppen und Coxeter-Gruppen, Invent. Math., Volume 17 (1972), pp. 245-271 | DOI | MR | Zbl

[10] K.S. Brown Cohomology of groups, Springer, 1982 | MR | Zbl

[11] H. Cartan; S. Eilenberg Homological Algebra, Princeton University Press, Princeton, 1956 | MR | Zbl

[12] R. Charney Artin groups of finite type are biautomatic, Math. Ann., Volume 292 (1992) no. 4, pp. 671-683 | DOI | EuDML | MR | Zbl

[13] R. Charney Geodesic automation and growth functions for Artin groups of finite type, Math. Ann., Volume 301 (1995) no. 2, pp. 307-324 | DOI | EuDML | MR | Zbl

[14] R. Charney; J. Meier; K. Whittlesey Bestvina's normal form complex and the homology of Garside groups (Preprint) | MR | Zbl

[15] A.H. Clifford; G.B. Preston The algebraic Theory of Semigroups, vol. 1, AMS Surveys, Volume 7 (1961) | Zbl

[16] F. Cohen Cohomology of braid spaces, Bull. Amer. Math. Soc., Volume 79 (1973), pp. 763-766 | DOI | MR | Zbl

[17] F. Cohen Artin's braid groups, classical homotopy theory, and sundry other curiosities, Contemp. Math., Volume 78 (1988), pp. 167-206 | MR | Zbl

[18] C. de Concini; M. Salvetti Cohomology of Artin groups, Math. Research Letters, Volume 3 (1996), pp. 296-297 | MR | Zbl

[19] C. de Concini; M. Salvetti; F. Stumbo The top-cohomology of Artin groups with coefficients in rank 1 local systems over Z, Topology Appl., Volume 78 (1997) no. 1, pp. 5-20 | DOI | MR | Zbl

[20] P. Dehornoy Deux propriétés des groupes de tresses, C. R. Acad. Sci. Paris, Volume 315 (1992), pp. 633-638 | MR | Zbl

[21] P. Dehornoy Gaussian groups are torsion free, J. of Algebra, Volume 210 (1998), pp. 291-297 | DOI | MR | Zbl

[22] P. Dehornoy Braids and self-distributivity, Progress in Math., vol. 192, Birkhäuser, 2000 | MR | Zbl

[23] P. Dehornoy Groupes de Garside, Ann. Sci. École Norm. Sup., Volume 35 (2002), pp. 267-306 | EuDML | Numdam | MR | Zbl

[24] P. Dehornoy Complete group presentations (J. Algebra, to appear.) | MR

[25] P. Dehornoy; L. Paris Gaussian groups and Garside groups, two generalizations of Artin groups, Proc. London Math. Soc., Volume 79 (1999) no. 3, pp. 569-604 | DOI | MR | Zbl

[26] P. Deligne Les immeubles des groupes de tresses généralisés, Invent. Math., Volume 17 (1972), pp. 273-302 | DOI | EuDML | MR | Zbl

[27] E.A. Elrifai; H.R. Morton Algorithms for positive braids, Quart. J. Math. Oxford, Volume 45 (1994) no. 2, pp. 479-497 | DOI | MR | Zbl

[28] D. Epstein \& al. Word Processing in Groups, Jones \& Bartlett Publ., 1992 | MR | Zbl

[29] D.B. Fuks Cohomology of the braid group mod. 2, Funct. Anal. Appl., Volume 4 (1970), pp. 143-151 | DOI | MR | Zbl

[30] F.A. Garside The braid group and other groups, Quart. J. Math. Oxford, Volume 20 (1969) no. 78, pp. 235-254 | DOI | MR | Zbl

[31] V.V. Goryunov The cohomology of braid groups of series C and D and certain stratifications, Funkt. Anal. i Prilozhen., Volume 12 (1978) no. 2, pp. 76-77 | MR | Zbl

[32] Y. Kobayashi Complete rewriting systems and homology of monoid algebras, J. Pure Appl. Algebra, Volume 65 (1990), pp. 263-275 | DOI | MR | Zbl

[33] Y. Lafont A new finiteness condition for monoids presented by complete rewriting systems (after Craig C. Squier), J. Pure Appl. Algebra, Volume 98 (1995), pp. 229-244 | DOI | MR | Zbl

[34] Y. Lafont; A. Prouté Church-Rosser property and homology of monoids, Math. Struct. Comput. Sci, Volume 1 (1991), pp. 297-326 | DOI | MR | Zbl

[35] J.-L. Loday Higher syzygies, in `Une dégustation topologique: Homotopy theory in the Swiss Alps', Contemp. Math., Volume 265 (2000), pp. 99-127 | MR | Zbl

[36] M. Picantin Petits groupes gaussiens (2000) (Thèse de doctorat, Université de Caen)

[37] M. Picantin The center of thin Gaussian groups, J. Algebra, Volume 245 (2001) no. 1, pp. 92-122 | DOI | MR | Zbl

[38] M. Salvetti Topology of the complement of real hyperplanes in 𝐂 N , Invent. Math., Volume 88 (1987) no. 3, pp. 603-618 | DOI | EuDML | MR | Zbl

[39] M. Salvetti The homotopy type of Artin groups, Math. Res. Letters, Volume 1 (1994), pp. 565-577 | MR | Zbl

[40] H. Sibert Extraction of roots in Garside groups, Comm. in Algebra, Volume 30 (2002) no. 6, pp. 2915-2927 | DOI | MR | Zbl

[41] C. Squier Word problems and a homological finiteness condition for monoids, J. Pure Appl. Algebra, Volume 49 (1987), pp. 201-217 | DOI | MR | Zbl

[42] C. Squier The homological algebra of Artin groups, Math. Scand., Volume 75 (1995), pp. 5-43 | EuDML | MR | Zbl

[43] C. Squier A finiteness condition for rewriting systems, revision by F. Otto and Y. Kobayashi, Theoret. Compt. Sci., Volume 131 (1994), pp. 271-294 | MR | Zbl

[44] J. Stallings The cohomology of pregroups, Conference on Group Theory, Lecture Notes in Math., Volume 319 (1973), pp. 169-182 | MR | Zbl

[45] W. Thurston Finite state algorithms for the braid group, Circulated notes (1988)

[46] F.V. Vainstein Cohomologies of braid groups, Functional Anal. Appl., Volume 12 (1978), pp. 135-137 | DOI | Zbl

[47] V.V. Vershinin Braid groups and loop spaces, Uspekhi Mat. Nauk, Volume 54 (1999) no. 2, pp. 3-84 | MR | Zbl

Cité par Sources :