Nous décrivons de nouvelles méthodes combinatoires fournissant des résolutions explicites du module trivial par des -modules libres lorsque est le groupe de fractions d’un monoïde possédant suffisamment de ppcm (“monoïde localement gaussien”), et donc, permettant de calculer l’homologie de . Nos constructions s’appliquent en particulier à tous les groupes d’Artin–Tits de type de Coexeter fini. D’un point de vue technique, les démonstrations reposent sur les propriétés des ppcm dans un monoïde.
We describe new combinatorial methods for constructing explicit free resolutions of by -modules when is a group of fractions of a monoid where enough lest common multiples exist (“locally Gaussian monoid”), and therefore, for computing the homology of . Our constructions apply in particular to all Artin-Tits groups of finite Coexter type. Technically, the proofs rely on the properties of least common multiples in a monoid.
Keywords: free resolution, finite resolution, homology, contacting homotopy, braid groups, Artin groups
Mot clés : résolution libre, résolution finie, homologie, homotopie de contact, groupes de tresses, groupes d'Artin
@article{AIF_2003__53_2_489_0, author = {Dehornoy, Patrick and Lafont, Yves}, title = {Homology of gaussian groups}, journal = {Annales de l'Institut Fourier}, pages = {489--540}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {2}, year = {2003}, doi = {10.5802/aif.1951}, mrnumber = {1990005}, zbl = {1100.20036}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1951/} }
TY - JOUR AU - Dehornoy, Patrick AU - Lafont, Yves TI - Homology of gaussian groups JO - Annales de l'Institut Fourier PY - 2003 SP - 489 EP - 540 VL - 53 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1951/ DO - 10.5802/aif.1951 LA - en ID - AIF_2003__53_2_489_0 ER -
%0 Journal Article %A Dehornoy, Patrick %A Lafont, Yves %T Homology of gaussian groups %J Annales de l'Institut Fourier %D 2003 %P 489-540 %V 53 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1951/ %R 10.5802/aif.1951 %G en %F AIF_2003__53_2_489_0
Dehornoy, Patrick; Lafont, Yves. Homology of gaussian groups. Annales de l'Institut Fourier, Tome 53 (2003) no. 2, pp. 489-540. doi : 10.5802/aif.1951. http://www.numdam.org/articles/10.5802/aif.1951/
[1] Fragments of the word Delta in a braid group, Mat. Zam. Acad. Sci. SSSR ; transl. Math. Notes Acad. Sci. USSR, Volume 36 ; 36 (1984 ; 1984) no. 1 ; 1, p. 25-34 ; 505-510 | MR | Zbl
[2] A geometric rational form for Artin groups of FC type, Geometriae Dedicata, Volume 79 (2000), pp. 277-289 | DOI | MR | Zbl
[3] The cohomology ring of the colored braid group, Mat. Zametki, Volume 5 (1969), pp. 227-231 | MR | Zbl
[4] Toplogical invariants of algebraic functions II, Funkt. Anal. Appl., Volume 4 (1970), pp. 91-98 | DOI | MR | Zbl
[5] The dual braid monoid (Preprint) | Numdam | MR
[6] Non-positively curved aspects of Artin groups of finite type, Geometry \& Topology, Volume 3 (1999), pp. 269-302 | DOI | MR | Zbl
[7] A new approach to the word problem in the braid groups, Advances in Math., Volume 139 (1998) no. 2, pp. 322-353 | DOI | MR | Zbl
[8] Sur les groupes de tresses (d'après V.I. Arnold), Sém. Bourbaki, exp. no 401 (1971) (Springer Lect. Notes in Math.), Volume 317 (1973), pp. 21-44 | Numdam | Zbl
[9] Artin-Gruppen und Coxeter-Gruppen, Invent. Math., Volume 17 (1972), pp. 245-271 | DOI | MR | Zbl
[10] Cohomology of groups, Springer, 1982 | MR | Zbl
[11] Homological Algebra, Princeton University Press, Princeton, 1956 | MR | Zbl
[12] Artin groups of finite type are biautomatic, Math. Ann., Volume 292 (1992) no. 4, pp. 671-683 | DOI | EuDML | MR | Zbl
[13] Geodesic automation and growth functions for Artin groups of finite type, Math. Ann., Volume 301 (1995) no. 2, pp. 307-324 | DOI | EuDML | MR | Zbl
[14] Bestvina's normal form complex and the homology of Garside groups (Preprint) | MR | Zbl
[15] The algebraic Theory of Semigroups, vol. 1, AMS Surveys, Volume 7 (1961) | Zbl
[16] Cohomology of braid spaces, Bull. Amer. Math. Soc., Volume 79 (1973), pp. 763-766 | DOI | MR | Zbl
[17] Artin's braid groups, classical homotopy theory, and sundry other curiosities, Contemp. Math., Volume 78 (1988), pp. 167-206 | MR | Zbl
[18] Cohomology of Artin groups, Math. Research Letters, Volume 3 (1996), pp. 296-297 | MR | Zbl
[19] The top-cohomology of Artin groups with coefficients in rank 1 local systems over Z, Topology Appl., Volume 78 (1997) no. 1, pp. 5-20 | DOI | MR | Zbl
[20] Deux propriétés des groupes de tresses, C. R. Acad. Sci. Paris, Volume 315 (1992), pp. 633-638 | MR | Zbl
[21] Gaussian groups are torsion free, J. of Algebra, Volume 210 (1998), pp. 291-297 | DOI | MR | Zbl
[22] Braids and self-distributivity, Progress in Math., vol. 192, Birkhäuser, 2000 | MR | Zbl
[23] Groupes de Garside, Ann. Sci. École Norm. Sup., Volume 35 (2002), pp. 267-306 | EuDML | Numdam | MR | Zbl
[24] Complete group presentations (J. Algebra, to appear.) | MR
[25] Gaussian groups and Garside groups, two generalizations of Artin groups, Proc. London Math. Soc., Volume 79 (1999) no. 3, pp. 569-604 | DOI | MR | Zbl
[26] Les immeubles des groupes de tresses généralisés, Invent. Math., Volume 17 (1972), pp. 273-302 | DOI | EuDML | MR | Zbl
[27] Algorithms for positive braids, Quart. J. Math. Oxford, Volume 45 (1994) no. 2, pp. 479-497 | DOI | MR | Zbl
[28] Word Processing in Groups, Jones \& Bartlett Publ., 1992 | MR | Zbl
[29] Cohomology of the braid group mod. 2, Funct. Anal. Appl., Volume 4 (1970), pp. 143-151 | DOI | MR | Zbl
[30] The braid group and other groups, Quart. J. Math. Oxford, Volume 20 (1969) no. 78, pp. 235-254 | DOI | MR | Zbl
[31] The cohomology of braid groups of series C and D and certain stratifications, Funkt. Anal. i Prilozhen., Volume 12 (1978) no. 2, pp. 76-77 | MR | Zbl
[32] Complete rewriting systems and homology of monoid algebras, J. Pure Appl. Algebra, Volume 65 (1990), pp. 263-275 | DOI | MR | Zbl
[33] A new finiteness condition for monoids presented by complete rewriting systems (after Craig C. Squier), J. Pure Appl. Algebra, Volume 98 (1995), pp. 229-244 | DOI | MR | Zbl
[34] Church-Rosser property and homology of monoids, Math. Struct. Comput. Sci, Volume 1 (1991), pp. 297-326 | DOI | MR | Zbl
[35] Higher syzygies, in `Une dégustation topologique: Homotopy theory in the Swiss Alps', Contemp. Math., Volume 265 (2000), pp. 99-127 | MR | Zbl
[36] Petits groupes gaussiens (2000) (Thèse de doctorat, Université de Caen)
[37] The center of thin Gaussian groups, J. Algebra, Volume 245 (2001) no. 1, pp. 92-122 | DOI | MR | Zbl
[38] Topology of the complement of real hyperplanes in , Invent. Math., Volume 88 (1987) no. 3, pp. 603-618 | DOI | EuDML | MR | Zbl
[39] The homotopy type of Artin groups, Math. Res. Letters, Volume 1 (1994), pp. 565-577 | MR | Zbl
[40] Extraction of roots in Garside groups, Comm. in Algebra, Volume 30 (2002) no. 6, pp. 2915-2927 | DOI | MR | Zbl
[41] Word problems and a homological finiteness condition for monoids, J. Pure Appl. Algebra, Volume 49 (1987), pp. 201-217 | DOI | MR | Zbl
[42] The homological algebra of Artin groups, Math. Scand., Volume 75 (1995), pp. 5-43 | EuDML | MR | Zbl
[43] A finiteness condition for rewriting systems, revision by F. Otto and Y. Kobayashi, Theoret. Compt. Sci., Volume 131 (1994), pp. 271-294 | MR | Zbl
[44] The cohomology of pregroups, Conference on Group Theory, Lecture Notes in Math., Volume 319 (1973), pp. 169-182 | MR | Zbl
[45] Finite state algorithms for the braid group, Circulated notes (1988)
[46] Cohomologies of braid groups, Functional Anal. Appl., Volume 12 (1978), pp. 135-137 | DOI | Zbl
[47] Braid groups and loop spaces, Uspekhi Mat. Nauk, Volume 54 (1999) no. 2, pp. 3-84 | MR | Zbl
Cité par Sources :