Soit où et sont des applications polynomiales. Nous établissons le lien qui existe entre le polygone de Newton de la courbe réunion du discriminant et du lieu de non-propreté de et la topologie des entrelacs à l’infini des courbes affines et . Nous en déduisons alors des conséquences liées à la conjecture du jacobien.
Let where and are polynomial maps. A relationship is established between the following two objects: on the one hand, the Newton polygon of the union of the discriminant curve of and its non-properness locus, and on the other, the topological type of the link at infinity of the affine curves and . Some consequences related to the Jacobian Conjecture are obtained.
Mot clés : applications polynomiales, quotients jacobiens, polygone de Newton, variétés graphées
Keywords: polynomial mappings, jacobian quotients, Newton polygon, graph manifolds
@article{AIF_2003__53_2_399_0, author = {Artal Bartolo, Enrique and Cassou-Nogu\`es, Philippe and Maugendre, H\'el\`ene}, title = {Quotients jacobiens d'applications polynomiales}, journal = {Annales de l'Institut Fourier}, pages = {399--428}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {2}, year = {2003}, doi = {10.5802/aif.1948}, mrnumber = {1990002}, zbl = {1100.14529}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.1948/} }
TY - JOUR AU - Artal Bartolo, Enrique AU - Cassou-Noguès, Philippe AU - Maugendre, Hélène TI - Quotients jacobiens d'applications polynomiales JO - Annales de l'Institut Fourier PY - 2003 SP - 399 EP - 428 VL - 53 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1948/ DO - 10.5802/aif.1948 LA - fr ID - AIF_2003__53_2_399_0 ER -
%0 Journal Article %A Artal Bartolo, Enrique %A Cassou-Noguès, Philippe %A Maugendre, Hélène %T Quotients jacobiens d'applications polynomiales %J Annales de l'Institut Fourier %D 2003 %P 399-428 %V 53 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1948/ %R 10.5802/aif.1948 %G fr %F AIF_2003__53_2_399_0
Artal Bartolo, Enrique; Cassou-Noguès, Philippe; Maugendre, Hélène. Quotients jacobiens d'applications polynomiales. Annales de l'Institut Fourier, Tome 53 (2003) no. 2, pp. 399-428. doi : 10.5802/aif.1948. http://www.numdam.org/articles/10.5802/aif.1948/
[1] Sur l'intersection des courbes méromorphes, C. R. Acad. Sci. Paris, Sér. I Math., Volume 329 (1999) no. 7, pp. 625-628 | DOI | MR | Zbl
[2] Diagrams of algebraic curves (2000) (preprint)
[3] Topology of complex polynomials via polar curves, Kodai Math. J., Volume 22 (1999) no. 1, pp. 131-139 | DOI | MR | Zbl
[4] Non-zero constant Jacobian polynomial maps of , Ann. Polon. Math., Volume 71 (1999) no. 3, pp. 287-310 | MR | Zbl
[5] Three-dimensional link theory and invariance of plane curve singularities, Annals of Mathematics Studies, no 110, Princeton University Press, Princeton NJ, 1985 | Zbl
[6] Formulae for the singularities at infinity of plane algebraic curves, Effective methods in algebraic and analytic geometry, 2000 (Kraków), MR1 886 934 (Univ. Iagel. Acta Math.), Volume 39 (2001), pp. 109-133 | Zbl
[7] Lectures on three-manifold topology, American Mathematical Society, Providence, R.I., 1980 | MR | Zbl
[8] Testing sets for properness of polynomial mappings, Math. Ann., Volume 315 (1999) no. 1, pp. 1-35 | DOI | MR | Zbl
[9] Geometry of critical loci, J. London Math. Soc. (2), Volume 63 (2001) no. 3, pp. 533-552 | DOI | MR | Zbl
[10] A geometrical approach to the Jacobian conjecture for , Kodai Math. J., Volume 17 (1994), pp. 374-381 | DOI | MR | Zbl
[11] Global surgery formula for the Casson-Walker invariant, Princeton University Press, Princeton, NJ, 1996 | MR | Zbl
[12] Discriminant of a germ and Seifert fibred manifolds, J. London Math. Soc. (2), Volume 59 (1999) no. 1, pp. 207-226 | MR | Zbl
[13] On the Jacobian conjecture and the configurations of roots, J. reine angew. Math., Volume 340 (1983), pp. 140-212 | EuDML | MR | Zbl
[14] A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc., Volume 268 (1981) no. 2, pp. 299-344 | DOI | MR | Zbl
[15] Rational polynomials of simple type, Pacific J. Math., Volume 204 (2002) no. 1, pp. 177-207 | DOI | MR | Zbl
[16] Good and bad field generators, J. Math. Kyoto Univ., Volume 17 (1977) no. 2, pp. 319-331 | MR | Zbl
[17] Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse, Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972 (Astérisque), Volume no 7-8 (1973), pp. 285-362 | Zbl
[18] Eine Klasse von 3-dimensionalen Mannigfaltigkeiten I, Invent. Math., Volume 3 (1967), pp. 308-333 | DOI | EuDML | Zbl
[19] Eine Klasse von 3-dimensionalen Mannigfaltigkeiten II, Invent. Math., Volume 4 (1967), pp. 87-117 | DOI | EuDML | MR | Zbl
Cité par Sources :