Nous démontrons des théorèmes de type Liouville pour les applications à -distorsion bornée entre variétés riemanniennes. En plus de ces applications, nous introduisons et étudions une nouvelle classe d’applications : les applications à -co-distorsion bornée.
We obtain Liouville type theorems for mappings with bounded -distorsion between Riemannian manifolds. Besides these mappings, we introduce and study a new class, which we call mappings with bounded -codistorsion.
Keywords: mapping with bounded distortion, capacity, parabolicity
Mot clés : applications à distorsion bornée, capacités, parabolicité
@article{AIF_2002__52_6_1753_0, author = {Troyanov, Marc and Vodop'yanov, Sergei}, title = {Liouville type theorems for mappings with bounded (co)-distortion}, journal = {Annales de l'Institut Fourier}, pages = {1753--1784}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {6}, year = {2002}, doi = {10.5802/aif.1933}, mrnumber = {1952530}, zbl = {1019.30022}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1933/} }
TY - JOUR AU - Troyanov, Marc AU - Vodop'yanov, Sergei TI - Liouville type theorems for mappings with bounded (co)-distortion JO - Annales de l'Institut Fourier PY - 2002 SP - 1753 EP - 1784 VL - 52 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1933/ DO - 10.5802/aif.1933 LA - en ID - AIF_2002__52_6_1753_0 ER -
%0 Journal Article %A Troyanov, Marc %A Vodop'yanov, Sergei %T Liouville type theorems for mappings with bounded (co)-distortion %J Annales de l'Institut Fourier %D 2002 %P 1753-1784 %V 52 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1933/ %R 10.5802/aif.1933 %G en %F AIF_2002__52_6_1753_0
Troyanov, Marc; Vodop'yanov, Sergei. Liouville type theorems for mappings with bounded (co)-distortion. Annales de l'Institut Fourier, Tome 52 (2002) no. 6, pp. 1753-1784. doi : 10.5802/aif.1933. http://www.numdam.org/articles/10.5802/aif.1933/
[1] A Mountain Pass to the Jacobian Conjecture, Canad. Math. Bull, Volume Vol. 41 (1998), pp. 442-451 | DOI | MR | Zbl
[2] Sobolev Spaces and Hypoelliptic Equations, II, Siberian Advances in Mathematics, Volume 6 (1996), pp. 64-96 | MR | Zbl
[3] Harnack Inequality and hyperbolicity for subelliptic -Laplacians with applications to Picard type theorems, Geom. Funct. Anal, Volume 11 (2001), pp. 1139-1191 | DOI | MR | Zbl
[4] Measure Theory and Fine properties of Functions, Studies in Advanced Mathematics, CRC press, 1992 | MR | Zbl
[5] Geometric Measure Theory, Grundlehren der Mathematik, Volume 153 (1969) | MR | Zbl
[6] Étude d'une classe d'applications liées à des homomorphismes d'algèbres de fonctions et généralisant les quasi-conformes, Duke Math. J, Volume 40 (1973), pp. 163-186 | MR | Zbl
[7] Algèbre de Royden et Homéomorphismes -dilatation bornée entre espaces métriques mesurés (2001) (Thèse, EPFL Lausanne)
[8] Homeomorphisms that induce Monomorphisms of Sobolev Spaces, Israel J. of Math, Volume 91 (1995), pp. 31-60 | DOI | MR | Zbl
[9] The Kelvin-Nevanlinna-Royden criterion for p-parabolicity, Math. Zeitschrift, Volume 232 (1999), pp. 607-619 | DOI | MR | Zbl
[10] Analytic and Geometric Background of Recurence and Non-Explosion of the Brownian Motion on Riemannian Manifolds, Bull. Amer. Math. Soc, Volume 36 (1999), pp. 135-242 | DOI | MR | Zbl
[11] Change of Variables Formula under Minimal Assumptions, Colloquium Mathematicum, Volume 64 (1993), pp. 93-101 | MR | Zbl
[12] Non Linear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs (1993) | MR
[13] Sobolev Mappings with Integrable Dilatation, Arch. Rational Mech.Anal, Volume 125 (1993), pp. 81-97 | DOI | MR | Zbl
[14] Non linear Potential Theory and Quasiregular Mappings on Riemannian Manifolds, Annales Academiae Scientiarum Fennicae Series A, Volume 74 (1990) | MR | Zbl
[15] Rough isometries and p-harmonic functions with finite Dirichlet integral, Revista Mathemática Iberoamericana, Volume 10 (1994), pp. 143-175 | MR | Zbl
[16] Mappings of finite distortion: Monotonicity and continuity (Preprint) | MR | Zbl
[17] Rough isometries and the parabolicity of Riemannian manifolds, J. Math. Soc. Japan, Volume 38 (1986) no. 2, pp. 227-238 | DOI | MR | Zbl
[18] Mappings of finite distortion: discreteness and openess (2000) (preprint 226, University of Jyv\"vaskylä) | MR | Zbl
[19] Absolutely continuous functions of several variables, J. Math. Anal. Appl, Volume 231 (1999), pp. 492-508 | DOI | MR | Zbl
[20] Lusin's condition N and mappings of the class , J. Reine Angew. Math, Volume 458 (1995), pp. 19-36 | DOI | MR | Zbl
[21] An extension of Reshetnyak's theorem, Indiana Univ. Math. J, Volume 47 (1998) no. 3, pp. 1131-1145 | MR | Zbl
[22] Definitions for Quasiregular Mappings, Ann. Acad. Sc. Fenn, Volume 448 (1969), pp. 5-40 | MR | Zbl
[23] Lusin's condition (N) and mappings of non negative Jacobian, Michigan. Math. J, Volume 39 (1992), pp. 495-508 | DOI | MR | Zbl
[24] Sobolev Spaces, Springer Verlag, 1985 | MR | Zbl
[25] Theory of Multipliers in Spaces of Differentiable Functions, Pitman, 1985 | MR
[26] On a new class of elastic deformations not allowing for cavitation, Ann. Inst. Henri Poincaré, Volume 11 (1994), pp. 217-243 | Numdam | MR | Zbl
[27] An existence theory for nonlinear elasticity that allows for cavitation, Arch. Rational Mech. Anal., Volume 131 (1995) no. 1, pp. 1-66 | DOI | MR | Zbl
[28] Difféomorphismes de p-dilatation bornées, Ann. Acad. Sc. Fenn, Volume 223 (1997), pp. 475-506 | MR | Zbl
[29] Cohomologie , espaces homogènes et pincement (1999) (preprint, Orsay)
[30] Über harmonishe Kapazität und quasikonforme Abbildungen in Raum., Comm. Math. Helv, Volume 44 (1969), pp. 284-307 | MR | Zbl
[31] Space Mappings with Bounded Distortion, Translation of Math. Monographs, Volume 73 (1989) | MR | Zbl
[32] Mappings with bounded distortion as extremals of integrals of Dirichlet type, Siberian Math. Journal, Volume 9 (1968), pp. 652-666 | MR | Zbl
[33] Sobolev classes of functions with values in a metric space, Siberian Math. Journal, Volume 38 (1997), pp. 657-675 | MR | Zbl
[34] Quasi-regular Mappings, Ergebnisse der Mathematik, 26, Springer, 1993 | Zbl
[35] Topics in the Theory of Quasi-regular Mappings, Aspekte der Mathematik, E 12, 1988 | Zbl
[36] The extension of interiority, with some applications, Trans. Amer. Math. Soc, Volume 103 (1962), pp. 329-340 | DOI | MR | Zbl
[37] Parabolicity of Manifolds, Siberian Adv. Math, Volume 9 (1999) no. 4, pp. 1-25 | MR | Zbl
[38] Taylor Formula and Function Spaces (in Russian), Novosibirsk University (1988) | MR | Zbl
[39] Geometric Properties of Function Spaces (in Russian) (1992) (D. Sc. Thesis, Novosibirsk, Sobolev Institute of Mathematics)
[40] Monotone Functions and Quaiconformal Mappings on Carnot Groups, Siberian Math. J, Volume 37 (1996) no. 6, pp. 1269-1295 | MR | Zbl
[41] Topological and Geometric Properties of Mappings of Sobolev Spaces with Integrable Jacobian I, Siberian Math. J, Volume 41 (2000) no. 1, pp. 23-48 | MR | Zbl
[42] Mappings with Bounded Distortion and with Finite Distortion on Carnot Groups, Siberian Math. J, Volume 40 (1999) no. 4, pp. 764-804 | MR | Zbl
[43] Quasi-conformal mapping and spaces of functions with generalized first derivatives, Siberian Math. J, Volume 17 (1977) no. 4, pp. 515-531 | Zbl
[44] Sobolev Spaces and (P,Q)-Quasiconformal Mappings of Carnot Groups, Siberian Math. J, Volume 39 (1998) no. 4, pp. 665-682 | DOI | MR | Zbl
[45] On the Conformal Type of a Riemannian Manifold, Func. Anal. and Appl, Volume 30 (1996), pp. 106-117 | DOI | MR | Zbl
[46] A theorem of M.A. Lavrent'ev on quasiconformal space maps, Mat.Sb., Volume 74 (1967) no. 116, pp. 417-433 | Zbl
[46] A theorem of M.A. Lavrent'ev on quasiconformal space maps, Math. USSR Sb. (English transl.), Volume 3 (1967) | Zbl
Cité par Sources :