Dans cet article nous démontrons l'existence de structures d'Einstein sasakiennes sur certaines 7-sphères d'homologie rationnelle, 2-connexes. Elle apparaissent comme étant les premiers exemples non réguliers de métriques d'Einstein sasakiennes sur les sphères d'homologie rationnelle, simplement connexes. Nous décrivons aussi brièvement les 7- sphères d'homologie rationnelle qui admettent des structures sasakiennes positives régulières.
In this paper we demonstrate the existence of Sasakian-Einstein structures on certain 2- connected rational homology 7-spheres. These appear to be the first non-regular examples of Sasakian-Einstein metrics on simply connected rational homology spheres. We also briefly describe the rational homology 7-spheres that admit regular positive Sasakian structures.
Keywords: Einstein metrics, sasakian structures, homology spheres
Mot clés : métriques d'Einstein, structures sasakiennes, sphères homologiques
@article{AIF_2002__52_5_1569_0, author = {Boyer, Charles P. and Galicki, Krzysztof and Nakamaye, Michael}, title = {Einstein metrics on rational homology 7-spheres}, journal = {Annales de l'Institut Fourier}, pages = {1569--1584}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {5}, year = {2002}, doi = {10.5802/aif.1925}, zbl = {1023.53029}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1925/} }
TY - JOUR AU - Boyer, Charles P. AU - Galicki, Krzysztof AU - Nakamaye, Michael TI - Einstein metrics on rational homology 7-spheres JO - Annales de l'Institut Fourier PY - 2002 SP - 1569 EP - 1584 VL - 52 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1925/ DO - 10.5802/aif.1925 LA - en ID - AIF_2002__52_5_1569_0 ER -
%0 Journal Article %A Boyer, Charles P. %A Galicki, Krzysztof %A Nakamaye, Michael %T Einstein metrics on rational homology 7-spheres %J Annales de l'Institut Fourier %D 2002 %P 1569-1584 %V 52 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1925/ %R 10.5802/aif.1925 %G en %F AIF_2002__52_5_1569_0
Boyer, Charles P.; Galicki, Krzysztof; Nakamaye, Michael. Einstein metrics on rational homology 7-spheres. Annales de l'Institut Fourier, Tome 52 (2002) no. 5, pp. 1569-1584. doi : 10.5802/aif.1925. http://www.numdam.org/articles/10.5802/aif.1925/
[BE] The Penrose Transform, Oxford University Press, New York, 1989 | MR | Zbl
[BFGK] Twistors and Killing Spinors on Riemannian Manifolds, Teubner-Texte für Mathematik, vol. 124, Teubner, Stuttgart, Leipzig, 1991 | MR | Zbl
[BG1] On Sasakian-Einstein Geometry, Int. J. Math, Volume 11 (2000), pp. 873-909 | DOI | MR | Zbl
[BG2] 3-Sasakian manifolds. Surveys in differential geometry: essays on Einstein manifolds (Surv. Differ. Geom.) (1999), pp. 123-184 | Zbl
[BG3] New Einstein Metrics in Dimension Five, J. Diff. Geom., Volume 57 (2001), pp. 443-463 | MR | Zbl
[BGN1] On the Geometry of Sasakian-Einstein 5-Manifolds (e-print. To appear in Math. Ann., math.DG/0012047) | MR | Zbl
[BGN2] On Positive Sasakian Geometry (e-print. To appear in Geom. Ded., math.DG/0104126) | MR | Zbl
[BGN3] Sasakian-Einstein Structures on , Trans. Amer. Math. Soc., Volume 354 (2002), pp. 2983-2996 | DOI | MR | Zbl
[BGN3] Sasakian-Einstein Structures on (e-print, math.DG/0102181)
[BGN4] Sasakian Geometry, Homotopy Spheres and Positive Ricci Curvature (e-print. To appear in Topology, math.DG/0201147) | MR | Zbl
[BGP] 3-Sasakian Geometry, Nilpotent Orbits, and Exceptional Quotients, Ann. Global Anal. Geom, Volume 21 (2002), pp. 85-110 | DOI | MR | Zbl
[DK] Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Scient. Ec. Norm. Sup. Paris, Volume 34 (2001), pp. 525-556 | Numdam | MR | Zbl
[DK] Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds (e-print, AG/9910118)
[Dol] Weighted projective varieties, Proceedings, Group Actions and Vector Fields, Vancouver (LNM), Volume 956 (1981), pp. 34-71 | Zbl
[Fle] Working with weighted complete intersections, revised version in Explicit birational geometry of 3-folds (Preprint MPI) (2000), pp. 101-173
[GS] On Betti numbers of 3-Sasakian manifolds, Geom. Ded., Volume 63 (1996), pp. 45-68 | MR | Zbl
[HZ] The Atiyah-Singer Theorem and Elementary Number Theory, Publish or Perish, Inc., Berkeley, 1974 | MR | Zbl
[Isk] Anticanonical Models of Three-dimensional Algebraic Varieties, J. Soviet Math., Volume 13 (1980), pp. 745-814 | DOI | Zbl
[IsPr] Fano Varieties, Algebraic Geometry V (Enc. Math. Sci), Volume Vol 47 (1999) | Zbl
[JK1] Kähler-Einstein metrics on log del Pezzo surfaces in weighted projective 3-space, Ann. Inst. Fourier, Volume 51 (2001) no. 1, pp. 69-79 | DOI | Numdam | MR | Zbl
[JK2] Fano hypersurfaces in weighted projective 4-spaces, Experimental Math, Volume 10(1) (2001), pp. 151-158 | MR | Zbl
[Mil] Singular Points of Complex Hypersurface, Ann. of Math. Stud, 61, Princeton Univ. Press, 1968 | MR | Zbl
[MO] Isolated singularities defined by weighted homogeneous polynomials, Topology, Volume 9 (1970), pp. 385-393 | DOI | MR | Zbl
[Mo] A Topological Classification of Complex Structures on , Topology, Volume 14 (1975), pp. 13-22 | MR | Zbl
[MU] Minimal Rational Threefolds, Algebraic Geometry (LNM), Volume 1016 (1983), pp. 490-518 | Zbl
[Sa] Remarks Concerning Contact Manifolds, Tôhoku Math. J, Volume 29 (1977), pp. 577-584 | DOI | MR | Zbl
[TaYu] On a Riemannian space admitting more than one Sasakian structure, Tôhoku Math. J, Volume 22 (1970), pp. 536-540 | DOI | MR | Zbl
[Ti1] Kähler-Einstein metrics with positive scalar curvature, Invent. Math, Volume 137 (1997), pp. 1-37 | DOI | MR | Zbl
[Ti2] Canonical Metrics in Kähler Geometry, Birkhäuser, Boston, 2000 | MR | Zbl
[Us1] Infinitely Many Contact Structures on , Int. Math. Res. Notices, Volume 14 (1999), pp. 781-791 | DOI | MR | Zbl
[Us2] Contact Homology and Contact Structures on (2000) (Ph.d. thesis, Stanford Univ)
[YK] Structures on manifolds, Series in Pure Mathematics, 3, World Scientific Pub. Co., Singapore, 1984 | MR | Zbl
Cité par Sources :