En utilisant la structure infinitésimale des représentations unitaires irréductibles de , nous donnons une description complète de certaines - algèbres associées aux réseaux de , répondant ainsi à certaines questions de Bekka–de La Harpe–Valette.
By using the infinitesimal structure of the unitary irreducible representations of , we give a complete description of certain -algebras associated to lattices in ; this gives answers to some questions of Bekka–de La Harpe–Valette.
Mot clés : $C^*$-algèbres, représentations unitaires, $(g,k)$-modules, réseaux
Keywords: $C^*$-algebras, unitary representations, $(g,k)$-modules, lattices
@article{AIF_2002__52_5_1287_0, author = {Pierrot, Fran\c{c}ois}, title = {Structure de certaines $C^*$-alg\`ebres associ\'ees aux r\'eseaux de ${\rm PSL}_2({\mathbb {R}})$}, journal = {Annales de l'Institut Fourier}, pages = {1287--1299}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {5}, year = {2002}, doi = {10.5802/aif.1919}, mrnumber = {1935551}, zbl = {1053.22004}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.1919/} }
TY - JOUR AU - Pierrot, François TI - Structure de certaines $C^*$-algèbres associées aux réseaux de ${\rm PSL}_2({\mathbb {R}})$ JO - Annales de l'Institut Fourier PY - 2002 SP - 1287 EP - 1299 VL - 52 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1919/ DO - 10.5802/aif.1919 LA - fr ID - AIF_2002__52_5_1287_0 ER -
%0 Journal Article %A Pierrot, François %T Structure de certaines $C^*$-algèbres associées aux réseaux de ${\rm PSL}_2({\mathbb {R}})$ %J Annales de l'Institut Fourier %D 2002 %P 1287-1299 %V 52 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1919/ %R 10.5802/aif.1919 %G fr %F AIF_2002__52_5_1287_0
Pierrot, François. Structure de certaines $C^*$-algèbres associées aux réseaux de ${\rm PSL}_2({\mathbb {R}})$. Annales de l'Institut Fourier, Tome 52 (2002) no. 5, pp. 1287-1299. doi : 10.5802/aif.1919. http://www.numdam.org/articles/10.5802/aif.1919/
[A] Expansionals in Banach Algebra, Ann. Sci. de l'École Normale Supérieure, 4e série, Volume 6 (1973), pp. 67-84 | Numdam | MR | Zbl
[B] Restrictions of unitary representations to lattices and associated -algebras, JFA, Volume 143 (1997) | MR | Zbl
[Ba] Multiplicateurs non bornés (1980) (Thèse de 3ème cycle, Paris VI)
[BCH] Some groups whose reduced -algebra is simple, Publ. Math. IHES, Volume 80 (1994), pp. 117-134 | Numdam | MR | Zbl
[BH] Représentations d'un groupe faiblement équivalentes à la représentation régulière, Bull. Soc. Math. France, Volume 122 (1994), pp. 333-342 | Numdam | MR | Zbl
[BV] Lattices in semi-simple Lie groups and multipliers of group -algebras (Astérisque), Volume 232 (1995), pp. 67-79 | Numdam | Zbl
[CS] The irreducibility of restrictions of unitary representations to lattices, J. Reine. Angew. Math, Volume 420 (1991), pp. 85-98 | MR | Zbl
[D] Les -algèbres et leurs représentations, Gauthiers-Villars, 1964 | MR | Zbl
[K] Lorentz groups: -theory of unitary representations and crossed products, Soviet. Math. Dokl, Volume 29 (1984) | MR | Zbl
[L] , Addison-Wesley, 1975 | MR
[Lan] Hilbert -modules, a toolkit for operator algebraists, London Math. Soc. Lect. Notes Series, Volume 210 | MR | Zbl
[M] Topological representations of the group -algebra of , Glas. Mat, Volume 6 (26) (1971), pp. 231-246 | MR | Zbl
[Ma] Discrete subgroups of semisimple Lie groups, Springer Verlag, 1989 | MR | Zbl
[P]
(2000) (Thèse de doctorat, Paris VII)[Ri] Induced representations of -algebras, Adv. in Math, Volume 13 (1974), pp. 176-257 | DOI | MR | Zbl
[V] Notes on the structure and the K-theory of the -algebra associated to , Bull. Soc. Math. Belg. Sér. B, Volume XXXVI (1984), pp. 29-56 | MR | Zbl
[Vo] A non-commutative Weyl-Von Neumann theorem, Rev. R. Maths. Pures Appl, Volume 21 (1976), pp. 97-113 | MR | Zbl
[W] On the Selberg trace formula in the case of compact quotient, Bull. AMS, Volume vol 62 (1976) no. 2, pp. 171-195 | DOI | MR | Zbl
[W2] Real reductive groups I, Academic Press, 1988 | MR | Zbl
[Wo] Unbounded elements affiliated with -algebras and noncompact quantum groups, Comm. Math. Phys, Volume 136 (1991), pp. 399-432 | DOI | MR | Zbl
Cité par Sources :