Nous construisons une action algébrique non linéarisable (i.e. pas conjuguée à une action linéaire) du groupe des permutations de 3 éléments sur l’espace affine complexe de dimension quatre. Plus généralement, cette action peut être utilisée pour construire des actions non linéarisables de sur pour tout entier .
The main purpose of this article is to give an explicit algebraic action of the group of permutations of 3 elements on affine four-dimensional complex space which is not conjugate to a linear action.
Keywords: nonlinearizable actions, equivariant vector bundles, invariants
Mot clés : actions non linéarisables, fibrés vectoriels équivariants, invariants
@article{AIF_2002__52_1_133_0, author = {Freudenburg, Gene and Moser-Jauslin, Lucy}, title = {A nonlinearizable action of $S_3$ on ${\mathbb {C}}^4$}, journal = {Annales de l'Institut Fourier}, pages = {133--143}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {1}, year = {2002}, doi = {10.5802/aif.1879}, mrnumber = {1881573}, zbl = {1028.14019}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1879/} }
TY - JOUR AU - Freudenburg, Gene AU - Moser-Jauslin, Lucy TI - A nonlinearizable action of $S_3$ on ${\mathbb {C}}^4$ JO - Annales de l'Institut Fourier PY - 2002 SP - 133 EP - 143 VL - 52 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1879/ DO - 10.5802/aif.1879 LA - en ID - AIF_2002__52_1_133_0 ER -
%0 Journal Article %A Freudenburg, Gene %A Moser-Jauslin, Lucy %T A nonlinearizable action of $S_3$ on ${\mathbb {C}}^4$ %J Annales de l'Institut Fourier %D 2002 %P 133-143 %V 52 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1879/ %R 10.5802/aif.1879 %G en %F AIF_2002__52_1_133_0
Freudenburg, Gene; Moser-Jauslin, Lucy. A nonlinearizable action of $S_3$ on ${\mathbb {C}}^4$. Annales de l'Institut Fourier, Tome 52 (2002) no. 1, pp. 133-143. doi : 10.5802/aif.1879. http://www.numdam.org/articles/10.5802/aif.1879/
[A] Non-linearizable algebraic -actions on affine spaces, Invent. Math., Volume 138 (1999) no. 2, pp. 281-306 | DOI | MR | Zbl
[BH1] Linearizing certain reductive group actions, Trans. Amer. Math. Soc., Volume 292 (1985), pp. 463-482 | DOI | MR | Zbl
[BH2] Some equivariant -theory of affine algebraic group actions, Comm. Algebra, Volume 15 (1987), pp. 181-217 | DOI | MR | Zbl
[DK] Non-linearizable holomorphic group actions, Math. Annalen, Volume 311 (1998), pp. 41-53 | DOI | MR | Zbl
[HK] Le principe d'Oka équivariant, C.R. Acad. Sci. Paris, Série I, Volume 315 (1992), pp. 217-220 | MR | Zbl
[Kr1] Algebraic automorphisms of affine space, Topological Methods in Algebraic Transformation Groups, Proceedings of a Conference at Rutgers (Progress in Mathematics), Volume Vol. 80 (1989), pp. 81-106 | Zbl
[Kr2] G-vector bundles and the linearization problem, Group Actions and Invariant Theory, Proceeding of the 1988 Montreal Conference (Canadian Math. Soc.), Volume Vol. 10 (1988), pp. 111-124 | Zbl
[KS] Reductive group actions with one dimensional quotient, Publ. Math. IHES, Volume 76 (1992), pp. 1-97 | Numdam | MR | Zbl
[Med] Moduli of -equivariant vector bundles (1995) (Thesis, Brandeis Univ.)
[MJ] Triviality of certain equivariant vector bundles for finite cyclic groups, C.R. Acad. Sci. Paris, Volume 317 (1993), pp. 139-144 | MR | Zbl
[MMP1] Equivariant algebraic vector bundles over cones with smooth one dimensional quotient, J. Math. Soc. Japan, Volume 50 (1998), pp. 379-414 | DOI | MR | Zbl
[MMP2] The equivariant Serre problem for abelian groups, Topology, Volume 35 (1996), pp. 329-334 | DOI | MR | Zbl
[MP] Stably trivial equivariant algebraic vector bundles, J. Amer. Math. Soc., Volume 8 (1995), pp. 687-714 | DOI | MR | Zbl
[Q] Projective modules over polynomial rings, Invent. Math., Volume 36 (1976), pp. 167-171 | DOI | MR | Zbl
[Sch] Exotic algebraic group actions, C.R. Acad. Sci. Paris, Volume 309 (1989), pp. 89-94 | MR | Zbl
[Sus] Projective modules over a polynomial ring, Soviet Doklady, Volume 17 (1976), pp. 1160-1164 | Zbl
[Sus] Projective modules over a polynomial ring, Dokl. Acad. Nauk. SSSR, Volume 26 (1976)
Cité par Sources :