Une version du critère de Nakai-Moishezon est démontrée pour toute surface compacte complexe, quelle que soit la parité du premier nombre de Betti.
A version of the classical Nakai-Moishezon criterion is proved for all compact complex surfaces, regardless of the parity of the first Betti number.
@article{AIF_2000__50_5_1533_0, author = {Buchdahl, Nicholas}, title = {A {Nakai-Moishezon} criterion for {non-K\"ahler} surfaces}, journal = {Annales de l'Institut Fourier}, pages = {1533--1538}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {5}, year = {2000}, doi = {10.5802/aif.1799}, mrnumber = {2002b:32031}, zbl = {0964.32014}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1799/} }
TY - JOUR AU - Buchdahl, Nicholas TI - A Nakai-Moishezon criterion for non-Kähler surfaces JO - Annales de l'Institut Fourier PY - 2000 SP - 1533 EP - 1538 VL - 50 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1799/ DO - 10.5802/aif.1799 LA - en ID - AIF_2000__50_5_1533_0 ER -
%0 Journal Article %A Buchdahl, Nicholas %T A Nakai-Moishezon criterion for non-Kähler surfaces %J Annales de l'Institut Fourier %D 2000 %P 1533-1538 %V 50 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1799/ %R 10.5802/aif.1799 %G en %F AIF_2000__50_5_1533_0
Buchdahl, Nicholas. A Nakai-Moishezon criterion for non-Kähler surfaces. Annales de l'Institut Fourier, Tome 50 (2000) no. 5, pp. 1533-1538. doi : 10.5802/aif.1799. http://www.numdam.org/articles/10.5802/aif.1799/
[BPV] Compact Complex Surfaces, Berlin-Heidelberg-New York, Springer, 1984. | MR | Zbl
, and ,[Bou] Groupes et Algèbres de Lie, Ch. 4, 5, 6, “Éléments de mathématiques” Fasc. XXXIV, Paris, Hermann, 1968.
,[B] On compact Kähler surfaces, Ann. Inst. Fourier, 49-1 (1999), 287-302. | Numdam | MR | Zbl
,[G] Le théorème de l'excentricité nulle, C. R. Acad. Sci. Paris, 285 (1977), 387-390. | MR | Zbl
,[GH] Principles of Algebraic Geometry, New York, Wiley, 1978. | MR | Zbl
and ,[HL] An intrinsic characterisation of Kähler manifolds, Invent. Math., 74 (1983), 169-198. | MR | Zbl
and ,[L] Le cône kählérien d'une surface, J. Math. Pures Appl., 78 (1999), 249-263. | MR | Zbl
,Cité par Sources :