Soient une variété de Hadamard de courbure et un groupe d’isométries non élémentaire. Nous montrons qu’il y a équivalence entre la non-arithméticité du spectre des longueurs de , le mélange topologique du flot géodésique et l’existence d’une feuille dense pour le feuilletage fortement stable.
Let be a Hadamard manifold with curvature and be a non elementary isometry group acting freely properly discontinuously on . We are interested in the topology of the leaves of the strong stable foliation on . We establish equivalences between the non arithmeticity of (i.e. the group generated by the length spectrum of is dense in ), the existence of a dense leaf in the non wandering set of and the topological mixing of the geodesic flow on its non wandering set. Our proof uses the action of on and the relation between cross-ratio and length spectrum.In the case when is not arithmetic, we prove that is geometrically finite if and only if leaves in are dense or are associated to bounded parabolic fixed points (such leaves are closed).
@article{AIF_2000__50_3_981_0, author = {Dal'bo, Fran\c{c}oise}, title = {Topologie du feuilletage fortement stable}, journal = {Annales de l'Institut Fourier}, pages = {981--993}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {3}, year = {2000}, doi = {10.5802/aif.1781}, mrnumber = {2001i:37045}, zbl = {0965.53054}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.1781/} }
TY - JOUR AU - Dal'bo, Françoise TI - Topologie du feuilletage fortement stable JO - Annales de l'Institut Fourier PY - 2000 SP - 981 EP - 993 VL - 50 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1781/ DO - 10.5802/aif.1781 LA - fr ID - AIF_2000__50_3_981_0 ER -
Dal'bo, Françoise. Topologie du feuilletage fortement stable. Annales de l'Institut Fourier, Tome 50 (2000) no. 3, pp. 981-993. doi : 10.5802/aif.1781. http://www.numdam.org/articles/10.5802/aif.1781/
[B] Structure conforme au bord et flot géodésique d'un CAT(-1)-espace, L'Ens. Math., 41 (1995), 63-102. | MR | Zbl
,[Bo1] Geometrical finiteness with variable negative curvature, Duke Math. Jour., Vol. 77, n° 1 (1995), 229-274. | MR | Zbl
,[Bo2] Relatively hyperbolic groups, Preprint 1999.
,[D] Remarques sur le spectre des longueurs d'une surface et comptages, Bol. Soc. Bras. Math., Vol. 30, n° 2 (1999). | Zbl
,[DP] Some negatively curved manifolds with cusps, mixing and counting, J. reine angew Math., 497 (1998), 141-169. | MR | Zbl
, ,[DS] On a classification of limit points of infinitely generated Schottky groups, Prépublication Rennes, 1999. | Zbl
, ,[E1] Geodesic flows on negatively curved manifolds, I, Ann. of Math., Vol. 95, n° 3 (1973), 492-510. | MR | Zbl
,[E2] Geodesic flows on negatively curved manifolds, II, Trans. of the A.M.S., Vol. 178 (1973), 57-82. | MR | Zbl
,[E3] Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Mathematics, 1996. | MR | Zbl
,[GR] Products of random matrices : convergence theorem, Contemp. Math., Vol. 50 (1986), 31-53. | MR | Zbl
- ,[H] Fuchsian group and transitive horocycles, Duke Math. J., 2 (1936), 530-542. | JFM | Zbl
,[K] Rigidity of rank one symmetric spaces and their product, (à paraître dans Topology). | Zbl
,[NW] Limit points via Schottky groups, LMS Lectures Notes, 173 (1992), 190-195. | MR | Zbl
, ,[O] Sur la géométrie symplectique de l'espace des géodésiques d'une variété à courbure négative, Revista Mathematica Iber. Amer., 8, n° 3 (1992). | MR | Zbl
,[S] Stabilité globale des systèmes dynamiques, Astérisque, 56 (1978). | Numdam | MR | Zbl
,[S1] Parabolic fixed points of kleinian groups and the horospherical foliation on hyperbolic manifolds, Int. Journ. of Math., Vol. 8 n° 2 (1997), 289-299. | MR | Zbl
,[S2] Fuchsian groups from the dynamical viewpoint, Jour. of Dyn. and Control System, 1 (1995), 427-445. | MR | Zbl
,[T] Conical limit points and uniform convergence groups, J. reine angew Math., 501 (1998), 71-98. | MR | Zbl
,Cité par Sources :