Nous déterminons tous les corps diédraux à multiplication complexe de nombres de classes relatif un, puis ceux de nombre de classes un : il y a 32 tels corps non-abéliens principaux. C’est le premier exemple, dans ce cadre assez général, de résolution du problème de nombre de classes un pour les corps galoisiens à multiplication complexe avec un type de groupe de Galois non-abélien fixé.
We determine all the dihedral CM fields with relative class number one, then all of them with class number one: there are 32 such non-abelian fields with class number one. This is the first example of resolution of the class number one problem for non-abelian normal CM-fields of a given Galois group.
@article{AIF_2000__50_1_67_0, author = {Lefeuvre, Yann}, title = {Corps di\'edraux \`a multiplication complexe principaux}, journal = {Annales de l'Institut Fourier}, pages = {67--103}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {1}, year = {2000}, doi = {10.5802/aif.1747}, mrnumber = {2001g:11166}, zbl = {0952.11024}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/aif.1747/} }
TY - JOUR AU - Lefeuvre, Yann TI - Corps diédraux à multiplication complexe principaux JO - Annales de l'Institut Fourier PY - 2000 SP - 67 EP - 103 VL - 50 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1747/ DO - 10.5802/aif.1747 LA - fr ID - AIF_2000__50_1_67_0 ER -
%0 Journal Article %A Lefeuvre, Yann %T Corps diédraux à multiplication complexe principaux %J Annales de l'Institut Fourier %D 2000 %P 67-103 %V 50 %N 1 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1747/ %R 10.5802/aif.1747 %G fr %F AIF_2000__50_1_67_0
Lefeuvre, Yann. Corps diédraux à multiplication complexe principaux. Annales de l'Institut Fourier, Tome 50 (2000) no. 1, pp. 67-103. doi : 10.5802/aif.1747. https://www.numdam.org/articles/10.5802/aif.1747/
[1] Computing ray class groups, conductors and discriminants, Actes du Colloque ANTS II, Talence, 1996. | Zbl
, , ,[2] Note on Dirichlet's L-functions, Acta Arith., 1 (1936), 113-114. | JFM | Zbl
,[3] On a hypothesis implying the non-vanishing of Dirichlet's L-series L(s,χ) for s > 0, J. reine angew. Math., 262/263 (1973), 415-419. | MR | Zbl
, , ,[4] On the functional equation of the Artin L-function for characters of real representations, Invent. Math., 20 (1973), 125-138. | MR | Zbl
, ,[5] Elementary theory of L-functions and Eisenstein series, London Math. Soc., Student Texts, Cambridge University Press, 26 (1993). | MR | Zbl
,[6] Some analytic bounds for zeta functions and class numbers, Invent. Math., 55 (1979), 37-47. | MR | Zbl
,[7] Corps à multiplication complexe diédraux principaux, Thèse, Univ. Caen, soutenue le 28 juin 1999.
,[8] The class number one problem for the dihedral CM-fields, to appear in the Proceedings of Conference on Algebraic Number Theory and Diophantine Analysis, Gras, 1998. | Zbl
, ,[9] Lower bounds for relative class numbers of CM-fields, Proc. Amer. Math. Soc., 120 (1994), 425-434. | MR | Zbl
,[10] Corps quadratiques principaux à corps de classes de Hilbert principaux et à multiplication complexe, Acta Arith., 74 (1996), 121-140. | MR | Zbl
,[11] Majorations explicites du résidu au point 1 des fonctions zêta de certains corps de nombres, J. Math. Soc. Japan, 50 (1998), 57-69. | MR | Zbl
,[12] Upper bounds on |L(1,χ)| and applications, Canad. J. Math., 50 (1998), 795-815. | Zbl
,[13] Computation of relative class numbers of CM-fields by using Hecke L-functions, Math. Comp., 69 (1999), 371-393. | MR | Zbl
,[14] Computation of L(0,χ) and of relative class numbers of CM-fields, Preprint Univ. Caen, 1998. | Zbl
,[15] Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith., 67 (1994), 47-62. | MR | Zbl
, ,[16] The class number one problem for some non-abelian normal CM-fields of 2-power degrees, Proc. London Math. Soc., 76 (3) (1998), 523-548. | MR | Zbl
, ,[17] The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc., 349 (1997), 3657-3678. | MR | Zbl
, , ,[18] Construction of the real dihedral number fields of degree 2p. Applications, Acta Arith., 89 (1999), 201-215. | MR | Zbl
, , ,[19] Sur l'arithmétique des extensions galoisiennes à groupe de Galois diédral d'ordre 2p, Ann. Inst. Fourier Grenoble, 19, 1 (1969), 1-80. | Numdam | MR | Zbl
,[20] Some analytic estimates of class numbers and discriminants, Invent. Math., 29 (1975), 279-286. | MR | Zbl
,[21] On conductors and discriminants, Algebraic number fields, Durham Symposium, 1975, A. Fröhlich, éd., Academic Press (1977), 377-407. | MR | Zbl
,[22] Algorithmes de factorisation dans les extensions relatives et applications de la conjecture de Stark à la construction des corps de classes de rayon, Thèse, Univ. Bordeaux, 1997.
,[23] Introduction to cyclotomic fields, Springer-Verlag, Graduate Texts in Mathematics 83, second edition, 1997. | MR | Zbl
,[24] The determination of the imaginary abelian number fields with class number one, Math. Comp., 62 (1994), 899-921. | MR | Zbl
,- Nonabelian normal CM-fields of degree
, Journal of the Australian Mathematical Society, Volume 87 (2009) no. 1, pp. 129-144 | DOI:10.1017/s1446788709000081 | Zbl:1196.11151 - Class number one problem for normal CM-fields, Journal of Number Theory, Volume 125 (2007) no. 1, pp. 59-84 | DOI:10.1016/j.jnt.2006.10.012 | Zbl:1128.11053
- The class number one problem for the normal CM-fields of degree 32, Transactions of the American Mathematical Society, Volume 359 (2007) no. 10, pp. 5057-5089 | DOI:10.1090/s0002-9947-07-04219-5 | Zbl:1162.11392
- CM-fields with relative class number one, Mathematics of Computation, Volume 75 (2006) no. 254, pp. 997-1013 | DOI:10.1090/s0025-5718-05-01811-9 | Zbl:1143.11353
- On Quadratic Number Fields Each Having an Unramified Extension Which Properly Contains the Hilbert Class Field of its Genus Field, Galois Theory and Modular Forms, Volume 11 (2004), p. 271 | DOI:10.1007/978-1-4613-0249-0_13
- The class number one problem for some non-abelian normal CM-fields of degree 48, Mathematics of Computation, Volume 72 (2003) no. 242, pp. 1003-1017 | DOI:10.1090/s0025-5718-02-01443-6 | Zbl:1071.11062
- Explicit Upper Bounds for Residues of Dedekind Zeta Functions and Values ofL-Functions ats= 1, and Explicit Lower Bounds for Relative Class Numbers of CM-Fields, Canadian Journal of Mathematics, Volume 53 (2001) no. 6, p. 1194 | DOI:10.4153/cjm-2001-045-5
- Computation of
and of relative class numbers of CM-fields, Nagoya Mathematical Journal, Volume 161 (2001), pp. 171-191 | DOI:10.1017/s0027763000022170 | Zbl:0985.11054 - Dihedral CM fields with class number one, Annales de l'Institut Fourier, Volume 50 (2000) no. 1, pp. 67-103 | DOI:10.5802/aif.1747 | Zbl:0952.11024
- The class number one problem for some non-abelian normal CM-fields of degree 24, Journal de Théorie des Nombres de Bordeaux, Volume 11 (1999) no. 2, pp. 387-406 | DOI:10.5802/jtnb.257 | Zbl:1010.11063
Cité par 10 documents. Sources : Crossref, zbMATH