Corps diédraux à multiplication complexe principaux
Annales de l'Institut Fourier, Tome 50 (2000) no. 1, pp. 67-103.

Nous déterminons tous les corps diédraux à multiplication complexe de nombres de classes relatif un, puis ceux de nombre de classes un : il y a 32 tels corps non-abéliens principaux. C’est le premier exemple, dans ce cadre assez général, de résolution du problème de nombre de classes un pour les corps galoisiens à multiplication complexe avec un type de groupe de Galois non-abélien fixé.

We determine all the dihedral CM fields with relative class number one, then all of them with class number one: there are 32 such non-abelian fields with class number one. This is the first example of resolution of the class number one problem for non-abelian normal CM-fields of a given Galois group.

@article{AIF_2000__50_1_67_0,
     author = {Lefeuvre, Yann},
     title = {Corps di\'edraux \`a multiplication complexe principaux},
     journal = {Annales de l'Institut Fourier},
     pages = {67--103},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {50},
     number = {1},
     year = {2000},
     doi = {10.5802/aif.1747},
     mrnumber = {2001g:11166},
     zbl = {0952.11024},
     language = {fr},
     url = {https://www.numdam.org/articles/10.5802/aif.1747/}
}
TY  - JOUR
AU  - Lefeuvre, Yann
TI  - Corps diédraux à multiplication complexe principaux
JO  - Annales de l'Institut Fourier
PY  - 2000
SP  - 67
EP  - 103
VL  - 50
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.1747/
DO  - 10.5802/aif.1747
LA  - fr
ID  - AIF_2000__50_1_67_0
ER  - 
%0 Journal Article
%A Lefeuvre, Yann
%T Corps diédraux à multiplication complexe principaux
%J Annales de l'Institut Fourier
%D 2000
%P 67-103
%V 50
%N 1
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1747/
%R 10.5802/aif.1747
%G fr
%F AIF_2000__50_1_67_0
Lefeuvre, Yann. Corps diédraux à multiplication complexe principaux. Annales de l'Institut Fourier, Tome 50 (2000) no. 1, pp. 67-103. doi : 10.5802/aif.1747. https://www.numdam.org/articles/10.5802/aif.1747/

[1] H. Cohen, F. Diaz Y Diaz, M. Olivier, Computing ray class groups, conductors and discriminants, Actes du Colloque ANTS II, Talence, 1996. | Zbl

[2] S. Chowla, Note on Dirichlet's L-functions, Acta Arith., 1 (1936), 113-114. | JFM | Zbl

[3] S. Chowla, M.J. Deleon, P. Hartung, On a hypothesis implying the non-vanishing of Dirichlet's L-series L(s,χ) for s > 0, J. reine angew. Math., 262/263 (1973), 415-419. | MR | Zbl

[4] A. Fröhlich, J. Queyrut, On the functional equation of the Artin L-function for characters of real representations, Invent. Math., 20 (1973), 125-138. | MR | Zbl

[5] H. Hida, Elementary theory of L-functions and Eisenstein series, London Math. Soc., Student Texts, Cambridge University Press, 26 (1993). | MR | Zbl

[6] J. Hoffstein, Some analytic bounds for zeta functions and class numbers, Invent. Math., 55 (1979), 37-47. | MR | Zbl

[7] Y. Lefeuvre, Corps à multiplication complexe diédraux principaux, Thèse, Univ. Caen, soutenue le 28 juin 1999.

[8] Y. Lefeuvre, S. Louboutin, The class number one problem for the dihedral CM-fields, to appear in the Proceedings of Conference on Algebraic Number Theory and Diophantine Analysis, Gras, 1998. | Zbl

[9] S. Louboutin, Lower bounds for relative class numbers of CM-fields, Proc. Amer. Math. Soc., 120 (1994), 425-434. | MR | Zbl

[10] S. Louboutin, Corps quadratiques principaux à corps de classes de Hilbert principaux et à multiplication complexe, Acta Arith., 74 (1996), 121-140. | MR | Zbl

[11] S. Louboutin, Majorations explicites du résidu au point 1 des fonctions zêta de certains corps de nombres, J. Math. Soc. Japan, 50 (1998), 57-69. | MR | Zbl

[12] S. Louboutin, Upper bounds on |L(1,χ)| and applications, Canad. J. Math., 50 (1998), 795-815. | Zbl

[13] S. Louboutin, Computation of relative class numbers of CM-fields by using Hecke L-functions, Math. Comp., 69 (1999), 371-393. | MR | Zbl

[14] S. Louboutin, Computation of L(0,χ) and of relative class numbers of CM-fields, Preprint Univ. Caen, 1998. | Zbl

[15] S. Louboutin, R. Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith., 67 (1994), 47-62. | MR | Zbl

[16] S. Louboutin, R. Okazaki, The class number one problem for some non-abelian normal CM-fields of 2-power degrees, Proc. London Math. Soc., 76 (3) (1998), 523-548. | MR | Zbl

[17] S. Louboutin, R. Okazaki, M. Olivier, The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc., 349 (1997), 3657-3678. | MR | Zbl

[18] S. Louboutin, Y.H. Park, Y. Lefeuvre, Construction of the real dihedral number fields of degree 2p. Applications, Acta Arith., 89 (1999), 201-215. | MR | Zbl

[19] J. Martinet, Sur l'arithmétique des extensions galoisiennes à groupe de Galois diédral d'ordre 2p, Ann. Inst. Fourier Grenoble, 19, 1 (1969), 1-80. | Numdam | MR | Zbl

[20] A.M. Odlyzko, Some analytic estimates of class numbers and discriminants, Invent. Math., 29 (1975), 279-286. | MR | Zbl

[21] A.M. Odlyzko, On conductors and discriminants, Algebraic number fields, Durham Symposium, 1975, A. Fröhlich, éd., Academic Press (1977), 377-407. | MR | Zbl

[22] X.F. Roblot, Algorithmes de factorisation dans les extensions relatives et applications de la conjecture de Stark à la construction des corps de classes de rayon, Thèse, Univ. Bordeaux, 1997.

[23] L.C. Washington, Introduction to cyclotomic fields, Springer-Verlag, Graduate Texts in Mathematics 83, second edition, 1997. | MR | Zbl

[24] K. Yamamura, The determination of the imaginary abelian number fields with class number one, Math. Comp., 62 (1994), 899-921. | MR | Zbl

  • Kwon, S.-H.; Louboutin, S.; Park, S.-M. Nonabelian normal CM-fields of degree 2pq, Journal of the Australian Mathematical Society, Volume 87 (2009) no. 1, pp. 129-144 | DOI:10.1017/s1446788709000081 | Zbl:1196.11151
  • Park, Sun-Mi; Kwon, Soun-Hi Class number one problem for normal CM-fields, Journal of Number Theory, Volume 125 (2007) no. 1, pp. 59-84 | DOI:10.1016/j.jnt.2006.10.012 | Zbl:1128.11053
  • Park, Sun-Mi; Yang, Hee-Sun; Kwon, Soun-Hi The class number one problem for the normal CM-fields of degree 32, Transactions of the American Mathematical Society, Volume 359 (2007) no. 10, pp. 5057-5089 | DOI:10.1090/s0002-9947-07-04219-5 | Zbl:1162.11392
  • Lee, Geon-No; Kwon, Soun-Hi CM-fields with relative class number one, Mathematics of Computation, Volume 75 (2006) no. 254, pp. 997-1013 | DOI:10.1090/s0025-5718-05-01811-9 | Zbl:1143.11353
  • Yamamura, Ken On Quadratic Number Fields Each Having an Unramified Extension Which Properly Contains the Hilbert Class Field of its Genus Field, Galois Theory and Modular Forms, Volume 11 (2004), p. 271 | DOI:10.1007/978-1-4613-0249-0_13
  • Chang, Ku-Young; Kwon, Soun-Hi The class number one problem for some non-abelian normal CM-fields of degree 48, Mathematics of Computation, Volume 72 (2003) no. 242, pp. 1003-1017 | DOI:10.1090/s0025-5718-02-01443-6 | Zbl:1071.11062
  • Louboutin, Stéphane Explicit Upper Bounds for Residues of Dedekind Zeta Functions and Values ofL-Functions ats= 1, and Explicit Lower Bounds for Relative Class Numbers of CM-Fields, Canadian Journal of Mathematics, Volume 53 (2001) no. 6, p. 1194 | DOI:10.4153/cjm-2001-045-5
  • Louboutin, Stéphane Computation of L(0,χ) and of relative class numbers of CM-fields, Nagoya Mathematical Journal, Volume 161 (2001), pp. 171-191 | DOI:10.1017/s0027763000022170 | Zbl:0985.11054
  • Lefeuvre, Yann Dihedral CM fields with class number one, Annales de l'Institut Fourier, Volume 50 (2000) no. 1, pp. 67-103 | DOI:10.5802/aif.1747 | Zbl:0952.11024
  • Lemmermeyer, F.; Louboutin, S.; Okazaki, R. The class number one problem for some non-abelian normal CM-fields of degree 24, Journal de Théorie des Nombres de Bordeaux, Volume 11 (1999) no. 2, pp. 387-406 | DOI:10.5802/jtnb.257 | Zbl:1010.11063

Cité par 10 documents. Sources : Crossref, zbMATH