Étant donné une variété algébrique réelle compacte non singulière, on étudie les classes de cohomologie algébrique données par les cycles algébriques, algébriquement équivalents à zéro.
Given a compact nonsingular real algebraic variety we study the algebraic cohomology classes given by algebraic cycles algebraically equivalent to zero.
@article{AIF_1999__49_6_1797_0, author = {Ab\'anades, Miguel and Kucharz, Wojciech}, title = {Algebraic equivalence of real algebraic cycles}, journal = {Annales de l'Institut Fourier}, pages = {1797--1804}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {6}, year = {1999}, doi = {10.5802/aif.1738}, mrnumber = {2001a:14061}, zbl = {0932.14033}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1738/} }
TY - JOUR AU - Abánades, Miguel AU - Kucharz, Wojciech TI - Algebraic equivalence of real algebraic cycles JO - Annales de l'Institut Fourier PY - 1999 SP - 1797 EP - 1804 VL - 49 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1738/ DO - 10.5802/aif.1738 LA - en ID - AIF_1999__49_6_1797_0 ER -
%0 Journal Article %A Abánades, Miguel %A Kucharz, Wojciech %T Algebraic equivalence of real algebraic cycles %J Annales de l'Institut Fourier %D 1999 %P 1797-1804 %V 49 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1738/ %R 10.5802/aif.1738 %G en %F AIF_1999__49_6_1797_0
Abánades, Miguel; Kucharz, Wojciech. Algebraic equivalence of real algebraic cycles. Annales de l'Institut Fourier, Tome 49 (1999) no. 6, pp. 1797-1804. doi : 10.5802/aif.1738. http://www.numdam.org/articles/10.5802/aif.1738/
[1] Topology of Real Algebraic Sets, Mathematical Sciences Research Institute Publications, Springer, 1992. | MR | Zbl
and ,[2] Transcendental submanifolds of Rn, Comm. Math. Helv., 68 (1993), 308-318. | MR | Zbl
and ,[3] Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., 128 (1997), 207-302. | MR | Zbl
and ,[4] Algebraic models of smooth manifolds, Invent. Math., 97 (1989), 585-611. | MR | Zbl
and ,[5] La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France, 89 (1961), 461-513. | Numdam | MR | Zbl
et ,[6] Differentiable Periodic Maps, Lecture Notes in Math., Vol. 738, Berlin-Heidelberg-New York, Springer, 1979. | MR | Zbl
,[7] Intersection Theory, Ergebnisse der Math., Vol. 2, Berlin-Heidelberg-New York, Springer, 1984. | MR | Zbl
,[8] Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., 79 (1964), 109-326. | MR | Zbl
,[9] Homotopy Theory, New York, Academic Press, 1959. | MR | Zbl
,[10] Algebraic equivalence and homology classes of real algebraic cycles, Math. Nachr., 180 (1996), 135-140. | MR | Zbl
,[11] Characteristic Classes, Ann. of Math. Studies, Vol. 76, Princeton Univ. Press, 1974. | MR | Zbl
and ,[12] Quelques propriétés globales de variétés différentiables, Comm. Math. Helv., 28 (1954), 17-86. | MR | Zbl
,[13] Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa, 27 (1973), 167-185.. | Numdam | MR | Zbl
,Cité par Sources :