François Jaeger a conjecturé en 1974 que tout graphe , cubique et cycliquement 4-connexe, est dual-hamiltonien, c’est-à-dire que l’on peut partitionner l’ensemble des sommets de en deux sous-ensembles tels que chacun induit un arbre de . Nous donnons plusieurs remarques sur cette conjecture.
François Jaeger conjectured in 1974 that every cyclically 4-connected cubic graph is dual hamiltonian, that is to say the vertices of can be partitioned into two subsets such that each subset induces a tree in . We shall make several remarks on this conjecture.
@article{AIF_1999__49_3_921_0, author = {Jackson, Bill and Whitehead, Carol A.}, title = {Some remarks on {Jaeger's} dual-hamiltonian conjecture}, journal = {Annales de l'Institut Fourier}, pages = {921--926}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {3}, year = {1999}, doi = {10.5802/aif.1699}, mrnumber = {2000d:05072}, zbl = {0920.05048}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1699/} }
TY - JOUR AU - Jackson, Bill AU - Whitehead, Carol A. TI - Some remarks on Jaeger's dual-hamiltonian conjecture JO - Annales de l'Institut Fourier PY - 1999 SP - 921 EP - 926 VL - 49 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1699/ DO - 10.5802/aif.1699 LA - en ID - AIF_1999__49_3_921_0 ER -
%0 Journal Article %A Jackson, Bill %A Whitehead, Carol A. %T Some remarks on Jaeger's dual-hamiltonian conjecture %J Annales de l'Institut Fourier %D 1999 %P 921-926 %V 49 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1699/ %R 10.5802/aif.1699 %G en %F AIF_1999__49_3_921_0
Jackson, Bill; Whitehead, Carol A. Some remarks on Jaeger's dual-hamiltonian conjecture. Annales de l'Institut Fourier, Tome 49 (1999) no. 3, pp. 921-926. doi : 10.5802/aif.1699. http://www.numdam.org/articles/10.5802/aif.1699/
[1] A combinatorial decomposition theory, Canadian J. Math., 32 (1980), 734-765. | MR | Zbl
and ,[2] Hamilton cycles in plane triangulations, submitted.
and ,[3] On vertex induced forests in cubic graphs, Proc. Fifth Southeastern Conf. on Combinatorics, Graph Theory and Computing, Utilitas Mathematica, Winnipeg (1974), 501-512. | MR | Zbl
,[4] Matroid Theory, Oxford Univ. Press, Oxford, 1992. | MR | Zbl
,[5] Ensembles cycliquement stables et graphes cubiques, Cahiers du C.E.R.O., 17 (1975), 319-343. | MR | Zbl
and ,[6] A theorem on planar graphs, Trans. Amer. Math. Soc., 82 (1956), 99-116. | MR | Zbl
,[7] A theorem on graphs, Ann. of Math., 32 (1931), 378-390. | JFM | Zbl
,Cité par Sources :