Un schéma abélien correspond à un cas particulier de ce qui est habituellement nommé un anneau de Schur. Après un rappel des résultats dont on a besoin sur les codes additifs dans un schéma abélien, et leurs duaux, les schémas de translatés, les schémas métriques et les graphes distance-réguliers, les partitions cohérentes et les graphes complètement réguliers, nous donnons d’autres preuves de certains de ces résultats. De cette manière, nous obtenons une construction de schémas métriques abéliens et un algorithme pour calculer leurs matrices d’intersection.
An Abelian scheme corresponds to a special instance of what is usually named a Schur-ring. After the needed results have been quoted on additive codes in Abelian schemes and their duals, coset configurations, coset schemes, metric schemes and distance regular graphs, partition designs and completely regular codes, we give alternative proofs of some of those results. In this way we obtain a construction of metric Abelian schemes and an algorithm to compute their intersection matrices.
@article{AIF_1999__49_3_829_0, author = {Camion, Paul and Courteau, Bernard and Montpetit, Andr\'e}, title = {Metric coset schemes revisited}, journal = {Annales de l'Institut Fourier}, pages = {829--859}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {3}, year = {1999}, doi = {10.5802/aif.1695}, mrnumber = {2000g:05150}, zbl = {0917.05085}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1695/} }
TY - JOUR AU - Camion, Paul AU - Courteau, Bernard AU - Montpetit, André TI - Metric coset schemes revisited JO - Annales de l'Institut Fourier PY - 1999 SP - 829 EP - 859 VL - 49 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1695/ DO - 10.5802/aif.1695 LA - en ID - AIF_1999__49_3_829_0 ER -
%0 Journal Article %A Camion, Paul %A Courteau, Bernard %A Montpetit, André %T Metric coset schemes revisited %J Annales de l'Institut Fourier %D 1999 %P 829-859 %V 49 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1695/ %R 10.5802/aif.1695 %G en %F AIF_1999__49_3_829_0
Camion, Paul; Courteau, Bernard; Montpetit, André. Metric coset schemes revisited. Annales de l'Institut Fourier, Tome 49 (1999) no. 3, pp. 829-859. doi : 10.5802/aif.1695. http://www.numdam.org/articles/10.5802/aif.1695/
[1] Algebraic Combinatorics, The Benjamin/Cummings Publishing Company, Inc., 1984. | MR | Zbl
, ,[2] Hyperplane Codes, Graphs and Combinatorics, 1 (1985), 207-212. | MR | Zbl
,[3] Distance-Regular Graphs, Springer-Verlag Berlin Eidelberg, 1984. | Zbl
, and ,[4] Three-weight codes and association schemes, Philips J. Res., 39 (1984), 143-152. | MR | Zbl
and ,[5] On a pair of dual subschemes of the Hamming scheme Hn(q), European J. Combin., 6 (1985), 133-147.z. | MR | Zbl
and ,[6] Linear codes with given automorphism groups, Discrete Mathematics, 3 (1973), 33-45. | MR | Zbl
,[7] Codes and Association schemes, Chap. 18 in Handbook of Coding Theory, edited by V.S Pless and W.C. Huffman, Elsevier Amsterdam, 1998. | Zbl
,[8] On repartition designs in Hamming spaces, Inria Report, 626 (1987).
, and ,[9] On repartition designs in Hamming spaces, Applicable Algebra in Engin. Comm. and Comput., 2 (1992), 147-162. | MR | Zbl
, and ,[10] Weight distributions of translates of linear codes and genralized Pless identities, Journal of Information & Optimization Sciences, 8 (1987), N01, 1-23. | MR | Zbl
, , and ,[11] Weight distribution of cosets of 2-error-correcting binary BCH codes of length 15, 63 and 255 IEEE Trans. Inf. Theory, 38 (1992), No 4, 1353-1357. | MR | Zbl
, and ,[12] Dual distances of completely regular codes, Discrete Mathematics, 89 (1991), 7-15. | MR | Zbl
, ,[13] An Algebraic Approach to Association Schemes in Coding, Philips Res. Repts Suppl., 10 (1973). | Zbl
,[14] Four fundamental parameters of a code and their combinatorial significance, Inform. Control, 23 (1973), 407-438. | MR | Zbl
,[15] Bilinear forms over a finite field with applications to coding theory, J. of Combinatorial Theory (A), 25 (1978), 226-241. | MR | Zbl
,[16] Equitable partitions, Bolayai society mathematical studies, Combinatorics Paul Erdös is eighty (Vol. 1) Keszthely (Hungary), 1992, 173-192. | Zbl
,[17] Algebraic Combinatorics, Chapman and Hall, New York, London, 1993. | MR | Zbl
,[18] Quotients of Association Schemes, J. of Combinatorial Theory, Series A, 69 (1995), 185-199. | MR | Zbl
and ,[19] Association Schemes, in Algebraic Coding Theory and Applications, edited by G.Longo, CISM courses and Lectures N0. 258, Springer-Verlag Wien, New York, 1979. | Zbl
,[20] Coherent configurations, Geom. Dedicata, 4 (1975), 1-32. | MR | Zbl
,[21] An analog of Lloyd's Theorem for Completely Regular Codes, Proc. 5th British Combinatorial Conf., 1975, 261-267. | Zbl
and ,[22] Parameters of Association Schemes that are both P- and Q- Polynomial, J. of Combinatorial Theory, Series A, 36, No 3 (1984), 355-363. | MR | Zbl
,[23] Directed Distance-regular Graphs with the Q-Polynomial Property, J. of Combinatorial Theory, Series A, 48, No 2 (1990), 191-196. | MR | Zbl
,[24] Non-symmetric, Metric, Cometric Association Schemes are Self-dual, J. of Combinatorial Theory, Series A, 51, No 2 (1991), 244-247. | Zbl
,[25] The girth of a Directed Distance-regular Graph, J. of Combinatorial Theory, Series A, 58, No 1 (1993), 34-39. | MR | Zbl
,[26] A theorem on the distribution of weights in a systematic code, Bell Syst. Tech. J., 42 (1963), 79-94.
,[27] The Theory of Error-Correcting Codes, North-Holland, 1977. | Zbl
and ,[28] Codes dans les graphes réguliers, Thèse, Faculté des Sciences, Université de Scherbrooke, 1987.
,[29] Codes et partitions cohérentes, Annales des Sciences Mathématiques du Québec, 14, No 2 (1990), 183-191. | MR | Zbl
,[30] The Interval Function of a Graph, Mathematical Center Tracts 132, Mathematisch Centrum, Amsterdam (1980). | MR | Zbl
,[31] Classification of Graphs by regularity, J. Comb. Theory, Series B, 30 (1981), 318-331. | MR | Zbl
,[32] Completely regular codes, Discrete Mathematics, 106/107 (1992), 353-360. | MR | Zbl
,[33] Spectra of Graphs : Theory and Applications, Academic Press, New York, 1979.
, and ,[34] Uniformly packed codes, Probl. Peredach. Inform., 7 (1971), N0 1, 38-50. | Zbl
, and ,[35] Zur Theorie der einfach transitiven Permutationsgruppen, S. B. Preuss. Akad. Wiss., Phys.-Math. Kl, 1933, 598-623. | JFM | Zbl
,[36] Gesammelte Abhandlungen I, II, III, Springer, 1973.
,[37] Computing the Characteristic Polynomial of a Graph, Graphs and Combinatorics, Lecture Notes in Mathematics, 406 (1974), Springer, Berlin 153-162. | MR | Zbl
,[38] A Lloyd theorem in weakly metric association schemes, Europ. J. Combinatorics, 89 (1989), 189-196. | MR | Zbl
,[39] Completely regular codes and completely transitive codes, Discrete Mathematics, 81 (1990), 193-201. | MR | Zbl
,[40] On the Distance-Regularity in Graphs, J. Comb. Theory, Series B., 32 (1982), 156-161. | MR | Zbl
,Cité par Sources :