On étudie le problème de la restitution de singularités d’un potentiel de la rétrodiffusion. Soit un domaine précompact, convexe et . Soit avec et conormale au bord de et avec support dans ; si les données de la rétrodiffusion de et sont égaux, alors .
The problem of recovering the singularities of a potential from backscattering data is studied. Let be a smooth precompact domain in which is convex (or normally accessible). Suppose with and conormal to the boundary of and supported inside then if the backscattering data of and are equal up to smoothing, we show that is smooth.
@article{AIF_1998__48_5_1513_0, author = {Joshi, Mark S.}, title = {Recovering the total singularity of a conormal potential from backscattering data}, journal = {Annales de l'Institut Fourier}, pages = {1513--1532}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {48}, number = {5}, year = {1998}, doi = {10.5802/aif.1664}, mrnumber = {2000b:35272}, zbl = {0918.35140}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1664/} }
TY - JOUR AU - Joshi, Mark S. TI - Recovering the total singularity of a conormal potential from backscattering data JO - Annales de l'Institut Fourier PY - 1998 SP - 1513 EP - 1532 VL - 48 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1664/ DO - 10.5802/aif.1664 LA - en ID - AIF_1998__48_5_1513_0 ER -
%0 Journal Article %A Joshi, Mark S. %T Recovering the total singularity of a conormal potential from backscattering data %J Annales de l'Institut Fourier %D 1998 %P 1513-1532 %V 48 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1664/ %R 10.5802/aif.1664 %G en %F AIF_1998__48_5_1513_0
Joshi, Mark S. Recovering the total singularity of a conormal potential from backscattering data. Annales de l'Institut Fourier, Tome 48 (1998) no. 5, pp. 1513-1532. doi : 10.5802/aif.1664. http://www.numdam.org/articles/10.5802/aif.1664/
[1] Fourier Integral Operators II, Acta Mathematicae, 128 (1972), 183-269. | MR | Zbl
and ,[2] Recovering Singularities of a Potential from Singularities of Scattering Data, Commun. Math. Phys., 157 (1993), 549-572. | MR | Zbl
and ,[3] Estimates for singular Radon transforms and pseudo-differential operators with singular symbols, J. Funct. Anal., 89 (1990), 202-232. | MR | Zbl
and ,[4] Oscillatory integrals with Singular Symbols, Duke Math. J., 48 (1981), 251-267. | MR | Zbl
, ,[5] Fourier Integral Operators I, Acta Mathematicae, 127 (1971), 79-183. | MR | Zbl
,[6] Analysis of Linear Partial Differential Operators, Vol. 1 to 4, Springer Verlag, Berlin, 1985.
,[7] An Intrinsic Characterisation of Paired Lagrangian Distributions, Proc. Amer. Math. Soc., 125 (1997), N° 5, 1537-1543. | MR | Zbl
,[8] A Precise Calculus of Paired Lagrangian Distributions, M.I.T. thesis, 1994.
,[9] A Symbolic Contruction of the Forward Fundamental Solution of the Wave Operator, preprint. | Zbl
,[10] Recovering Asymptotics of Short Range Potentials, to appear in Commun. in Math. Phys. | Zbl
and ,[11] Scattering Theory, Revised Edition. New York, London: Academic Press, 1989. | MR | Zbl
, ,[12] Differential Analysis on Manifolds with Corners, forthcoming.
,[13] Marked Lagrangian Distributions, manuscript.
,[14] Lagrangian Intersection and the Cauchy Problem, Comm. on Pure and Applied Math., 32 (1979), 482-512. | MR | Zbl
and ,[15] Scattering Theory for the Wave Equation with Short Range Potential, Indiana Univ. Math. Journal, 31 (1982), 609-639. | Zbl
,Cité par Sources :