Pointwise estimates for the weighted Bergman projection kernel in n, using a weighted L2 estimate for the ¯ equation
Annales de l'Institut Fourier, Tome 48 (1998) no. 4, pp. 967-997.

Nous obtenons des estimations L2 à poids pour la solution canonique de l’équation ¯ dans L2(n,e-ϕdλ), où Ω est un domaine pseudoconvexe et ϕ une fonction strictement plurisousharmonique. Ces estimations sont ensuite utilisées pour démontrer des estimations ponctuelles pour le noyau du projecteur de Bergman dans L2(n,e-ϕdλ). Le poids est utilisé pour obtenir un facteur e-ϵρ(z,ζ) dans l’estimation du noyau, où ρ est la distance associée à la métrique kählérienne définie par i¯ϕ.

Weighted L2 estimates are obtained for the canonical solution to the ¯ equation in L2(n,e-ϕdλ), where Ω is a pseudoconvex domain, and ϕ is a strictly plurisubharmonic function. These estimates are then used to prove pointwise estimates for the Bergman projection kernel in L2(n,e-ϕdλ). The weight is used to obtain a factor e-ϵρ(z,ζ) in the estimate of the kernel, where ρ is the distance function in the Kähler metric given by the metric form i¯ϕ.

@article{AIF_1998__48_4_967_0,
     author = {Delin, Henrik},
     title = {Pointwise estimates for the weighted {Bergman} projection kernel in ${\mathbb {C}}^n$, using a weighted $L^2$ estimate for the $\bar{\partial }$ equation},
     journal = {Annales de l'Institut Fourier},
     pages = {967--997},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {48},
     number = {4},
     year = {1998},
     doi = {10.5802/aif.1645},
     mrnumber = {99j:32027},
     zbl = {0918.32007},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1645/}
}
TY  - JOUR
AU  - Delin, Henrik
TI  - Pointwise estimates for the weighted Bergman projection kernel in ${\mathbb {C}}^n$, using a weighted $L^2$ estimate for the $\bar{\partial }$ equation
JO  - Annales de l'Institut Fourier
PY  - 1998
SP  - 967
EP  - 997
VL  - 48
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.1645/
DO  - 10.5802/aif.1645
LA  - en
ID  - AIF_1998__48_4_967_0
ER  - 
%0 Journal Article
%A Delin, Henrik
%T Pointwise estimates for the weighted Bergman projection kernel in ${\mathbb {C}}^n$, using a weighted $L^2$ estimate for the $\bar{\partial }$ equation
%J Annales de l'Institut Fourier
%D 1998
%P 967-997
%V 48
%N 4
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1645/
%R 10.5802/aif.1645
%G en
%F AIF_1998__48_4_967_0
Delin, Henrik. Pointwise estimates for the weighted Bergman projection kernel in ${\mathbb {C}}^n$, using a weighted $L^2$ estimate for the $\bar{\partial }$ equation. Annales de l'Institut Fourier, Tome 48 (1998) no. 4, pp. 967-997. doi : 10.5802/aif.1645. https://www.numdam.org/articles/10.5802/aif.1645/

[1] S. Bergman, The kernel function and conformal mapping, American Mathematical Society, Providence, R.I., revised ed., 1970, Mathematical Surveys, no V. | MR | Zbl

[2] B. Berndtsson, Uniform estimates with weights for the ∂-equation, to appear in J. Geom. Analysis. | Zbl

[3] I. Chavel, Riemannian geometry - a modern introduction, vol. 108 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1993. | MR | Zbl

[4] M. Christ, On the ∂ equation in weighted L2 norms in ℂ1, J. Geom. Anal., 1 (1991), 193-230. | MR | Zbl

[5] K. Diederich and G. Herbort, Extension of holomorphic L2-functions with weighted growth conditions, Nagoya Math. J., 126 (1992), 141-157. | MR | Zbl

[6] K. Diederich and T. Ohsawa, An estimate for the Bergman distance on pseudoconvex domains, Ann. of Math. (2), 141 (1995), 181-190. | MR | Zbl

[7] H. Donnelly and C. Fefferman, L2-cohomology and index theorem for the Bergman metric, Ann. of Math. (2), 118 (1983), 593-618. | MR | Zbl

[8] S. Dragomir, On weighted Bergman kernels of bounded domains, Studia Math., 108 (1994), 149-157. | MR | Zbl

[9] G. M. Henkin and J. Leiterer, Theory of functions on complex manifolds, vol. 79 of Monographs in Mathematics, Birkhäuser Verlag, Basel, 1984. | MR | Zbl

[10] L. Hörmander, L2 estimates and existence for the ∂ operator, Acta Mathematica, 113 (1965), 89-152. | Zbl

[11] N. Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann., 195 (1972), 149-158.

[12] P. Lelong and L. Gruman, Entire functions of several complex variables, Grundlehren der Mathematischen Wissenschaften [Fundamental Principales of Mathematical Sciences], 282, Springer-Verlag, Berlin, 1986. | MR | Zbl

[13] J. D. Mcneal, Boundary behavior of the Bergman kernel function in ℂ2, Duke Math. J., 58 (1989), 499-512. | MR | Zbl

[14] J. D. Mcneal, On large values of L2 holomorphic functions, Math. Res. Lett., 3 (1996), 247-259. | MR | Zbl

[15] A. Nagel, J.-P. Rosay, E. M. Stein, and S. Wainger, Estimates for the Bergman and Szegö kernels in ℂ2, Ann. of Math. (2), 129 (1989), 113-149. | MR | Zbl

[16] T. Ohsawa and K. Takegoshi, On the extension of L2 holomorphic functions, Math. Z., 195 (1987), 197-204. | MR | Zbl

[17] R. Schoen and S.-T. Yau, Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. | MR | Zbl

[18] Y.-T. Siu, Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geometry, 17 (1982), 55-138. | MR | Zbl

[19] Y.-T. Siu, The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, in Geometric Complex Analysis (Hayma, 1995), World Sci. Publishing, River Edge, NJ (1996), 577-592. | MR | Zbl

[20] R. O. Wells, Jr, Differential analysis on complex manifolds, Prentice-Hall, 1973. | Zbl

  • Deleporte, Alix; Hitrik, Michael; Sjöstrand, Johannes A direct approach to the analytic Bergman projection, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 33 (2024) no. 1, p. 153 | DOI:10.5802/afst.1765
  • Aryasomayajula, Anilatmaja; Roy, Dyuti; Sadhukhan, Debasish Estimates of Bergman kernels and Bergman metric on compact Picard surfaces, Journal of Mathematical Analysis and Applications, Volume 534 (2024) no. 2, p. 128069 | DOI:10.1016/j.jmaa.2023.128069
  • Phung, Thuc Trong Lp Estimates for the Bergman Projection on Generalized Fock Spaces, The Journal of Geometric Analysis, Volume 34 (2024) no. 6 | DOI:10.1007/s12220-024-01618-5
  • Patel, Dhiraj; Sivananthan, S. Random sampling of signals concentrated on compact set in localized reproducing kernel subspace of Lp(Rn), Advances in Computational Mathematics, Volume 49 (2023) no. 6 | DOI:10.1007/s10444-023-10075-7
  • Mai, Weixiong; Shao, Guokuan On the Bergman kernel in weighted monogenic Bargmann-Fock spaces, Advances in Mathematics, Volume 415 (2023), p. 108891 | DOI:10.1016/j.aim.2023.108891
  • Hu, Zhangjian; Virtanen, Jani A. IDA and Hankel operators on Fock spaces, Analysis PDE, Volume 16 (2023) no. 9, p. 2041 | DOI:10.2140/apde.2023.16.2041
  • Chang, Robert; Rabinowitz, Abraham Scaling Asymptotics for Szegő Kernels on Grauert Tubes, The Journal of Geometric Analysis, Volume 33 (2023) no. 2 | DOI:10.1007/s12220-022-01116-6
  • Yang, Zi‐cong; Zhou, Ze‐hua Generalized Volterra‐type operators on generalized Fock spaces, Mathematische Nachrichten, Volume 295 (2022) no. 8, p. 1641 | DOI:10.1002/mana.202000014
  • 郝, 丽丽 Hankel Operators on n-Dimension Generalized Fock Spaces Fφp, Pure Mathematics, Volume 12 (2022) no. 03, p. 323 | DOI:10.12677/pm.2022.123037
  • Hu, Zhangjian; Virtanen, Jani Schatten class Hankel operators on the Segal-Bargmann space and the Berger-Coburn phenomenon, Transactions of the American Mathematical Society (2022) | DOI:10.1090/tran/8638
  • Romero, José Luis; van Velthoven, Jordy Timo; Voigtlaender, Felix On dual molecules and convolution-dominated operators, Journal of Functional Analysis, Volume 280 (2021) no. 10, p. 108963 | DOI:10.1016/j.jfa.2021.108963
  • Hezari, Hamid; Xu, Hang On a property of Bergman kernels when the Kähler potential is analytic, Pacific Journal of Mathematics, Volume 313 (2021) no. 2, p. 413 | DOI:10.2140/pjm.2021.313.413
  • Berger, Franz; Maria Dall'Ara, Gian; Ngoc Son, Duong Exponential decay of Bergman kernels on complete Hermitian manifolds with Ricci curvature bounded from below, Complex Variables and Elliptic Equations, Volume 65 (2020) no. 12, p. 2086 | DOI:10.1080/17476933.2019.1691173
  • Hezari, Hamid; Lu, Zhiqin; Xu, Hang Off-diagonal Asymptotic Properties of Bergman Kernels Associated to Analytic Kähler Potentials, International Mathematics Research Notices, Volume 2020 (2020) no. 8, p. 2241 | DOI:10.1093/imrn/rny081
  • Bayraktar, Turgay; Coman, Dan; Marinescu, George Universality results for zeros of random holomorphic sections, Transactions of the American Mathematical Society, Volume 373 (2020) no. 6, p. 3765 | DOI:10.1090/tran/7807
  • Zelditch, Steve; Zhou, Peng Central limit theorem for spectral partial Bergman kernels, Geometry Topology, Volume 23 (2019) no. 4, p. 1961 | DOI:10.2140/gt.2019.23.1961
  • Hu, Zhangjian; Lv, Xiaofen; Schuster, Alexander P. Bergman spaces with exponential weights, Journal of Functional Analysis, Volume 276 (2019) no. 5, p. 1402 | DOI:10.1016/j.jfa.2018.05.001
  • Gröchenig, Karlheinz; Haimi, Antti; Ortega-Cerdà, Joaquim; Romero, José Luis Strict density inequalities for sampling and interpolation in weighted spaces of holomorphic functions, Journal of Functional Analysis, Volume 277 (2019) no. 12, p. 108282 | DOI:10.1016/j.jfa.2019.108282
  • Berman, Robert J. Determinantal Point Processes and Fermions on Polarized Complex Manifolds: Bulk Universality, Algebraic and Analytic Microlocal Analysis, Volume 269 (2018), p. 341 | DOI:10.1007/978-3-030-01588-6_5
  • Christ, Michael Upper Bounds for Bergman Kernels Associated to Positive Line Bundles with Smooth Hermitian Metrics, Algebraic and Analytic Microlocal Analysis, Volume 269 (2018), p. 437 | DOI:10.1007/978-3-030-01588-6_8
  • Chang, Robert; Zelditch, Steve Log-Scale Equidistribution of Zeros of Quantum Ergodic Eigensections, Annales Henri Poincaré, Volume 19 (2018) no. 12, p. 3783 | DOI:10.1007/s00023-018-0735-x
  • Bayraktar, Turgay Expected Number of Real Roots for Random Linear Combinations of Orthogonal Polynomials Associated with Radial Weights, Potential Analysis, Volume 48 (2018) no. 4, p. 459 | DOI:10.1007/s11118-017-9643-9
  • Aryasomayajula, Anilatmaja; Majumder, Priyanka Off-diagonal estimates of the Bergman kernel on hyperbolic Riemann surfaces of finite volume, Proceedings of the American Mathematical Society, Volume 146 (2018) no. 9, p. 4009 | DOI:10.1090/proc/14064
  • Chen, Bo-Yong Bergman kernel and hyperconvexity index, Analysis PDE, Volume 10 (2017) no. 6, p. 1429 | DOI:10.2140/apde.2017.10.1429
  • Bufetov, Alexander I.; Qiu, Yanqi Determinantal Point Processes Associated with Hilbert Spaces of Holomorphic Functions, Communications in Mathematical Physics, Volume 351 (2017) no. 1, p. 1 | DOI:10.1007/s00220-017-2840-y
  • Lv, Xiaofen Bergman projections on weighted Fock spaces in several complex variables, Journal of Inequalities and Applications, Volume 2017 (2017) no. 1 | DOI:10.1186/s13660-017-1560-3
  • Wang, Wei On the weighted L2 estimate for the k-Cauchy–Fueter operator and the weighted k-Bergman kernel, Journal of Mathematical Analysis and Applications, Volume 452 (2017) no. 1, p. 685 | DOI:10.1016/j.jmaa.2017.03.016
  • Ross, Julius; Singer, Michael Asymptotics of Partial Density Functions for Divisors, The Journal of Geometric Analysis, Volume 27 (2017) no. 3, p. 1803 | DOI:10.1007/s12220-016-9741-8
  • Lu, Zhiqin; Zelditch, Steve Szegő kernels and Poincaré series, Journal d'Analyse Mathématique, Volume 130 (2016) no. 1, p. 167 | DOI:10.1007/s11854-016-0033-9
  • Bayraktar, Turgay Asymptotic normality of linear statistics of zeros of random polynomials, Proceedings of the American Mathematical Society, Volume 145 (2016) no. 7, p. 2917 | DOI:10.1090/proc/13441
  • Yuan, Yuan; Zhu, Junyan Holomorphic Line Bundles over a Tower of Coverings, The Journal of Geometric Analysis, Volume 26 (2016) no. 3, p. 2013 | DOI:10.1007/s12220-015-9617-3
  • Xiao, Lian Hua; Wang, Xiao Feng; Xia, Jin Schatten-p class (0 < p ≤ ∞) Toeplitz operators on generalized Fock spaces, Acta Mathematica Sinica, English Series, Volume 31 (2015) no. 4, p. 703 | DOI:10.1007/s10114-015-3531-2
  • Dall'Ara, Gian Maria Pointwise estimates of weighted Bergman kernels in several complex variables, Advances in Mathematics, Volume 285 (2015), p. 1706 | DOI:10.1016/j.aim.2015.06.024
  • Hu, Zhangjian; Lu, Jin Essential Norm of Toeplitz Operators on the Fock Spaces, Integral Equations and Operator Theory, Volume 83 (2015) no. 2, p. 197 | DOI:10.1007/s00020-015-2245-2
  • Ma, Xiaonan; Marinescu, George Exponential estimate for the asymptotics of Bergman kernels, Mathematische Annalen, Volume 362 (2015) no. 3-4, p. 1327 | DOI:10.1007/s00208-014-1137-0
  • Hu, Zhangjian; Lv, Xiaofen Toeplitz Operators on Fock Spaces Fp(φ) F p ( φ ), Integral Equations and Operator Theory, Volume 80 (2014) no. 1, p. 33 | DOI:10.1007/s00020-014-2168-3
  • Asserda, Saïd; Hichame, Amal Pointwise estimate for the Bergman kernel of the weighted Bergman spaces with exponential type weights, Comptes Rendus. Mathématique, Volume 352 (2013) no. 1, p. 13 | DOI:10.1016/j.crma.2013.11.001
  • Cho, Hong Rae ESTIMATES FOR ¯ AND HANKEL OPERATORS ON GENERALIZED FOCK SPACES ON Cn, Taiwanese Journal of Mathematics, Volume 17 (2013) no. 4 | DOI:10.11650/tjm.17.2013.2027
  • Schuster, Alexander P.; Varolin, Dror Toeplitz Operators and Carleson Measures on Generalized Bargmann–Fock Spaces, Integral Equations and Operator Theory, Volume 72 (2012) no. 3, p. 363 | DOI:10.1007/s00020-011-1939-3
  • ASSERDA, SAID THE DEGREE OF HOLOMORPHIC APPROXIMATION ON A TOTALLY REAL SET, Bulletin of the Australian Mathematical Society, Volume 79 (2009) no. 1, p. 171 | DOI:10.1017/s0004972708001226
  • Marzo, Jordi; Ortega-Cerdà, Joaquim Pointwise Estimates for the Bergman Kernel of the Weighted Fock Space, Journal of Geometric Analysis, Volume 19 (2009) no. 4, p. 890 | DOI:10.1007/s12220-009-9083-x
  • Zelditch, Steve Quantum maps and automorphisms, The Breadth of Symplectic and Poisson Geometry, Volume 232 (2007), p. 623 | DOI:10.1007/0-8176-4419-9_22
  • Holland, Finbarr; Rochberg, Richard Bergman kernel asymptotics for generalized Fock spaces, Journal d'Analyse Mathématique, Volume 83 (2001) no. 1, p. 207 | DOI:10.1007/bf02790262
  • Lindholm, Niklas Sampling in Weighted Lp Spaces of Entire Functions in Cn and Estimates of the Bergman Kernel, Journal of Functional Analysis, Volume 182 (2001) no. 2, p. 390 | DOI:10.1006/jfan.2000.3733

Cité par 44 documents. Sources : Crossref