Cet article étudie le comportement asymptotique des valeurs propres négatives , quand , des opérateurs de Pauli avec un potentiel électrique qui tend vers à l’infini et avec un champ magnétique non constant, qui est supposé borné ou tendant vers à l’infini. Il est montré, en particulier, que , quand diminue plus rapidement que sous des hypothèses supplémentaires.
This article studies the asymptotic behavior of the number of the negative eigenvalues as of the two dimensional Pauli operators with electric potential decaying at and with nonconstant magnetic field , which is assumed to be bounded or to decay at . In particular, it is shown that , when decays faster than under some additional conditions.
@article{AIF_1998__48_2_479_0, author = {Iwatsuka, Akira and Tamura, Hideo}, title = {Asymptotic distribution of negative eigenvalues for two dimensional {Pauli} operators with nonconstant magnetic fields}, journal = {Annales de l'Institut Fourier}, pages = {479--515}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {48}, number = {2}, year = {1998}, doi = {10.5802/aif.1626}, mrnumber = {99e:35168}, zbl = {0909.35100}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1626/} }
TY - JOUR AU - Iwatsuka, Akira AU - Tamura, Hideo TI - Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields JO - Annales de l'Institut Fourier PY - 1998 SP - 479 EP - 515 VL - 48 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1626/ DO - 10.5802/aif.1626 LA - en ID - AIF_1998__48_2_479_0 ER -
%0 Journal Article %A Iwatsuka, Akira %A Tamura, Hideo %T Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields %J Annales de l'Institut Fourier %D 1998 %P 479-515 %V 48 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1626/ %R 10.5802/aif.1626 %G en %F AIF_1998__48_2_479_0
Iwatsuka, Akira; Tamura, Hideo. Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields. Annales de l'Institut Fourier, Tome 48 (1998) no. 2, pp. 479-515. doi : 10.5802/aif.1626. http://www.numdam.org/articles/10.5802/aif.1626/
[1] Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field, Phys. Rev. A, 19 (1979), 2461-2462.
and ,[2] Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J., 45 (1978), 847-883. | MR | Zbl
, and ,[3] L'asymptotique de Weyl pour les bouteilles magnétiques, Commun. Math. Phys., 105 (1986), 327-335. | MR | Zbl
,[4] Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Springer Verlag, 1987. | Zbl
, , and ,[5] Magnetic Lieb-Thirring inequalities and stochastic oscillatory integrals, Operator Theory, Advances and Applications, 78 (1994), Birkhäuser Verlag, 127-134. | MR | Zbl
,[6] Magnetic Lieb-Thirring inequalities, Commun. Math. Phys., 170 (1995), 629-668. | MR | Zbl
,[7] Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. I. Non-asymptotic Lieb-Thirring type estimate, preprint, 1996.
and ,[8] Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates, Commun. Math. Phys., 188 (1997), 599-656. | Zbl
and ,[9] Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs, Vol. 18, A.M.S., 1969. | MR | Zbl
and ,[10] Asymptotic distribution of eigenvalues for Pauli operators with nonconstant magnetic fields, preprint, 1997 (to be published in Duke Math. J.). | MR | Zbl
and ,[11] On the spectral theory of the Schrödinger operator with electromagnetic potential, Pseudo-differential Calculus and Mathematical Physics, Adv. Partial Differ. Eq., Academic Press, 5 (1994), 298-390. | MR | Zbl
and ,[12] Spectral properties of Schrödinger operators with magnetic fields for a spin 1/2 particle, J. Func. Anal., 101 (1991), 255-285. | MR | Zbl
,[13] Asymptotic behavior of the energy levels of a quantum particle in a homogeneous magnetic field, perturbed by a decreasing electric field I, J. Soviet Math., 35 (1986), 2201-2211. | Zbl
,[14] On the Lieb-Thirring estimates for the Pauli operator, Duke Math. J., 82 (1996), 607-637. | MR | Zbl
,[15] Asymptotic distribution of eigenvalues for Schrödinger operators with homogeneous magnetic fields, Osaka J. Math., 25 (1988), 633-647. | MR | Zbl
,Cité par Sources :