Goldbach numbers in sparse sequences
Annales de l'Institut Fourier, Tome 48 (1998) no. 2, pp. 353-378.

Nous montrons que pour presque tout nN, l’inégalité

| p 1 + p 2 - exp ( ( log n ) γ ) | < 1

a des solutions avec p 1 ,p 2 nombres premiers impairs, lorsque 1<γ<3 2. De plus, nous améliorons la borne de l’ensemble exceptionnel.

Ce résultat fournit presque tous les résultats sur les nombres de Goldbach dans des suites un peu plus fines que les valeurs prises par un polynôme.

We show that for almost all nN, the inequality

| p 1 + p 2 - exp ( ( log n ) γ ) | < 1

has solutions with odd prime numbers p 1 and p 2 , provided 1<γ<3 2. Moreover, we give a rather sharp bound for the exceptional set.

This result provides almost-all results for Goldbach numbers in sequences rather thinner than the values taken by any polynomial.

@article{AIF_1998__48_2_353_0,
     author = {Br\"udern, J\"org and Perelli, Alberto},
     title = {Goldbach numbers in sparse sequences},
     journal = {Annales de l'Institut Fourier},
     pages = {353--378},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {48},
     number = {2},
     year = {1998},
     doi = {10.5802/aif.1621},
     mrnumber = {99j:11119},
     zbl = {0902.11042},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.1621/}
}
TY  - JOUR
AU  - Brüdern, Jörg
AU  - Perelli, Alberto
TI  - Goldbach numbers in sparse sequences
JO  - Annales de l'Institut Fourier
PY  - 1998
SP  - 353
EP  - 378
VL  - 48
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.1621/
DO  - 10.5802/aif.1621
LA  - en
ID  - AIF_1998__48_2_353_0
ER  - 
%0 Journal Article
%A Brüdern, Jörg
%A Perelli, Alberto
%T Goldbach numbers in sparse sequences
%J Annales de l'Institut Fourier
%D 1998
%P 353-378
%V 48
%N 2
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.1621/
%R 10.5802/aif.1621
%G en
%F AIF_1998__48_2_353_0
Brüdern, Jörg; Perelli, Alberto. Goldbach numbers in sparse sequences. Annales de l'Institut Fourier, Tome 48 (1998) no. 2, pp. 353-378. doi : 10.5802/aif.1621. http://www.numdam.org/articles/10.5802/aif.1621/

[BHP] R.C. Baker, G. Harman, J. Pintz, The exceptional set for Goldbach's problem in short intervals - Sieve Methods, Exp. Sums and Appl. in Number Theory, ed. by G.R.H. Greaves et al., 1-54, Cambridge U. P. 1997. | MR | Zbl

[BP] J. Brüdern, A. Perelli, Goldbach numbers and uniform distribution mod 1, Analytic Number Theory, ed. by Y. Motohashi, 43-51, Cambridge Univ. Press. 1997. | Zbl

[D] H. Davenport, Multiplicative Number Theory, 2nd ed., Springer Verlag, 1980. | MR | Zbl

[G] D.A. Goldston, On Hardy and Littlewood's contribution to the Goldbach conjecture, Proc. Amalfi Conf. Analytic Number Theory, ed. by E. Bombieri et al., 115-155, Università di Salerno 1992. | MR | Zbl

[HL] G.H. Hardy, J.E. Littlewood, Some problems of "Partitio Numerorum", V : A further contribution to the study of Goldbach's problem, Proc. London Math. Soc., (2) 22 (1923), 46-56. | JFM

[K] A.A. Karacuba, Estimates for trigonometric sums by Vinogradov's method, and some applications, Proc. Steklov Inst. Math., 112 (1973), 251-265. | MR | Zbl

[LP] A. Languasco, A. Perelli, A pair correlation hypothesis and the exceptional set in Goldbach's problem, Mathematika, 43 (1996), 349-361. | MR | Zbl

[MV] H.L. Montgomery, R.C. Vaughan, The exceptional set in Goldbach's problem, Acta Arith., 27 (1975), 353-370. | MR | Zbl

[P] A. Perelli, Goldbach numbers represented by polynomials, Rev. Math. Iberoamericana, 12 (1996), 477-490. | MR | Zbl

[Va] R.C. Vaughan, The Hardy-Littlewood Method, Cambridge Univ. Press., 1981. | MR | Zbl

[Vi] I.M. Vinogradov, Selected Works, Springer Verlag, 1985.

Cité par Sources :