On montre qu’une 2-forme non nulle sur une variété , telle que le pseudogroupe des difféomorphismes locaux la préservant soit transitif sur le fibré des directions tangentes, est symplectique si la dimension de n’est pas . De plus, il y a un contre-exemple en dimension 6, dont on montre qu’il est essentiellement unique.
It is shown that a nonzero 2-form on a manifold , such that the pseudogroup of local diffeomorphisms preserving it acts transitively on the bundle of tangent directions, is symplectic if is not . Moreover, there is a counterexample in dimensions, which is shown to be essentially unique.
@article{AIF_1998__48_1_265_0, author = {S\'evennec, Bruno}, title = {Une caract\'erisation des formes symplectiques}, journal = {Annales de l'Institut Fourier}, pages = {265--280}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {48}, number = {1}, year = {1998}, doi = {10.5802/aif.1618}, mrnumber = {99b:53047}, zbl = {0943.53047}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.1618/} }
TY - JOUR AU - Sévennec, Bruno TI - Une caractérisation des formes symplectiques JO - Annales de l'Institut Fourier PY - 1998 SP - 265 EP - 280 VL - 48 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1618/ DO - 10.5802/aif.1618 LA - fr ID - AIF_1998__48_1_265_0 ER -
Sévennec, Bruno. Une caractérisation des formes symplectiques. Annales de l'Institut Fourier, Tome 48 (1998) no. 1, pp. 265-280. doi : 10.5802/aif.1618. http://www.numdam.org/articles/10.5802/aif.1618/
[Ar] Méthodes mathématiques de la mécanique classique, Mir, 1976. | MR | Zbl
,[Be] Einstein manifolds, Springer Verlag, 1987. | MR | Zbl
,[Bo1] Some remarks about Lie groups transitive on spheres and tori, Bull. Amer. Math. Soc., 55 (1949), 580-587. | MR | Zbl
,[Bo2] Le plan projectif des octaves et les sphères comme espaces homogènes, C. Rend. Acad. Sc., 230 (1950), 1378-1380. | MR | Zbl
,[Br] Submanifolds and special structures on the octonians, J. Differential Geometry, 17 (1982), 185-232. | MR | Zbl
,[Ca] Construction and properties of some 6-dimensional almost complex manifolds, Trans. Amer. Math. Soc., 87 (1958), 407-438. | MR | Zbl
,[Ec1] Stetige Lösungen linearer Gleichungssysteme, Comment. Math. Helv., 15 (1943), 318-339. | MR | Zbl
,[Ec2] Complex-analytic manifolds, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, pp. 420-427, Amer. Math. Soc., Providence, R. I., 1952. | Zbl
,[H] Algebraic geometry, Springer Verlag, 1977. | MR | Zbl
,[Ha] Spinors and calibrations [ch. 6], Academic Press, 1990. | MR | Zbl
,[He] Differential geometry, Lie groups and symmetric spaces, Academic Press, 1978. | MR | Zbl
,[Hi] Topological methods in algebraic geometry [ch. 1, §§3,4], Springer Verlag, 1966. | MR | Zbl
,[Ho] La structure des groupes de Lie, Dunod, 1968. | Zbl
,[HoGS] Splitting the tangent bundle of projective space, Indiana Univ. Math. J., 31, No. 2 (1982), 161-166. | MR | Zbl
, , ,[Hu] Fiber bundles [ch. 17], Springer Verlag, 3ème éd., 1994.
,[Ko] Transformation groups in differential geometry, Springer Verlag, 1972. | MR | Zbl
,[MiSt] Characteristic classes, Princeton University Press, 1974. | MR | Zbl
, ,[Mo] Simply connected homogeneous spaces, Proc. Amer. Math. Soc., 1 (1950), 467-469. | MR | Zbl
,[MoSa] Transformation groups of spheres, Ann. of Math., 44 (1943), 454-470. | MR | Zbl
, ,[Mu] Algebraic geometry I. Complex projective varieties, Springer Verlag, 1976. | Zbl
,[On] On Lie groups transitive on compact manifolds, I, II, III, Amer. Math. Soc. Translations, 73 (1968), 59-72; Mat. Sb., 116 (1967), 373-388; Mat. Sb., 117 (1968), 255-263. | Zbl
,[On2] Lie groups and Lie algebras 1. Foundations of Lie theory, Lie transformations groups, Springer Verlag, 1993. | Zbl
,[Sa] Riemannian geometry and holonomy groups [ch. 10], Longman, 1989. | MR | Zbl
,[Sz] A short topological proof for the symmetry of 2 point homogeneous spaces, Invent. Math., 106, No. 1 (1991), 61-64. | MR | Zbl
,Cité par Sources :