Soit un réseau irréductible dans un produit de groupes simples. Supposons qu’un des facteurs de possède la propriété (T). Nous donnons une description de la topologie dans un voisinage de la représentation triviale de dimension un de en termes de celle du dual de .
Nous utilisons ce résultat pour donner une nouvelle preuve de l’annulation du premier groupe de cohomologie de à coefficients dans une représentation unitaire de dimension finie.
Let be an irreducible lattice in a product of simple groups. Assume that has a factor with property (T). We give a description of the topology in a neighbourhood of the trivial one dimensional representation of in terms of the topology of the dual space of .
We use this result to give a new proof for the triviality of the first cohomology group of with coefficients in a finite dimensional unitary representation.
@article{AIF_1997__47_4_1065_0, author = {Bekka, Mohammed Bachir and Louvet, Nicolas}, title = {On a variant of {Kazhdan's} property {(T)} for subgroups of semisimple groups}, journal = {Annales de l'Institut Fourier}, pages = {1065--1078}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {47}, number = {4}, year = {1997}, doi = {10.5802/aif.1591}, mrnumber = {99b:22019}, zbl = {0874.22006}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1591/} }
TY - JOUR AU - Bekka, Mohammed Bachir AU - Louvet, Nicolas TI - On a variant of Kazhdan's property (T) for subgroups of semisimple groups JO - Annales de l'Institut Fourier PY - 1997 SP - 1065 EP - 1078 VL - 47 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1591/ DO - 10.5802/aif.1591 LA - en ID - AIF_1997__47_4_1065_0 ER -
%0 Journal Article %A Bekka, Mohammed Bachir %A Louvet, Nicolas %T On a variant of Kazhdan's property (T) for subgroups of semisimple groups %J Annales de l'Institut Fourier %D 1997 %P 1065-1078 %V 47 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1591/ %R 10.5802/aif.1591 %G en %F AIF_1997__47_4_1065_0
Bekka, Mohammed Bachir; Louvet, Nicolas. On a variant of Kazhdan's property (T) for subgroups of semisimple groups. Annales de l'Institut Fourier, Tome 47 (1997) no. 4, pp. 1065-1078. doi : 10.5802/aif.1591. http://www.numdam.org/articles/10.5802/aif.1591/
[Bor] Some finiteness properties of adèles groups over numbers fields, Publ. Math. IHES, 16 (1963), 1-30. | Numdam | Zbl
,[BoW] Continuous cohomology, discrete subgroups and representations of reductive groups, Annals of Math. Studies, Princeton University Press, 1980. | Zbl
and ,[Del] 1-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles Produits tensoriels continus de représentations, Bull. Soc. Math. France, 105 (1977), 281-336. | Numdam | MR | Zbl
,[Dix] Les C*-algèbres et leurs représentations, Gauthier-Villars, 1969. | MR | Zbl
,[Fe1] Weak containment and induced representations of groups, Canad. J. Math., 14 (1962), 237-268. | MR | Zbl
,[Fe2] Weak containment and Kronecker products of group representations, Pac. J. Math., 13 (1963), 503-510. | MR | Zbl
,[Gu1] Symmetric Hilbert spaces and related topics, Lecture Notes in Math., 261, Springer, 1972. | Zbl
,[Gu2] Cohomologie des groupes localement compacts et produits tensoriels continus de représentations, J. Multivariate Anal., 6 (1976), 138-158. | MR | Zbl
,[Gu3] Tensor products of C*-algebras, Part II, Lecture Notes Series, 13, Aarhus Universitet, 1969. | Zbl
,[Hum] Arithmetic groups, Lecture Notes in Math., 789, Springer, 1980. | MR | Zbl
,[HaV] La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque 75, Soc. Math. de France, 1989. | Numdam | Zbl
et ,[Lub] Discrete groups, expanding graphs and invariant measures, Progress in Math. 125, Birkhäuser, 1994. | MR | Zbl
,[LuZ] Variants of Kazhdan's property for subgroup of semisimple groups, Israel J. of Math., 66 (1989), 289-298. | MR | Zbl
and ,[Mar] Discrete subgroups of semisimple Lie groups, Springer, 1991. | MR | Zbl
,[VeK] Cohomology of groups in unitary representations, the neighbourhood of the identity and conditionally positive definite functions, Math. USSR Sbornik, 47 (1984), 513-526. | Zbl
and ,[Zim] Ergodic theory and semisimple groups, Birkhäuser, Boston, 1984. | MR | Zbl
,Cité par Sources :