Sur les actions affines des groupes discrets
Annales de l'Institut Fourier, Tome 47 (1997) no. 2, pp. 641-685.

On pourrait espérer “classifier” les actions différentiables en préservant le volume des réseaux de SL (n,) sur les variétés compactes. On en est cependant loin. Ainsi, plusieurs auteurs ont récemment étudié les actions des réseaux de SL (n,) sur des variétés de dimension relativement basse, précisément, n, et vérifiant en plus certaines conditions géométriques ou dynamiques. On montre alors qu’il s’agit essentiellement de l’action usuelle de SL (n,) sur un tore de dimension n. Ici, on généralise ce fait aux actions des réseaux de SL (n,) sur des variétés de dimension n+1, et qui préservent une connexion.

One would hope that, for lattices in SL (n,), n3, differentiable, volume preserving actions on compact manifolds might be “classifiable”. However, we are far from realizing this goal, and so many authors have recently been considering actions of lattices in SL (n,) on manifolds of relatively low dimension, precisely, of dimension n, and which, in addition, satisfy some extra dynamical or geometrical conditions. It has been shown, for example, that there is essentially no new action, other than the standard one of SL (n,) on the n-torus. Here we generalize this fact to connection preserving actions of lattices in SL (n,) on manifolds of dimension n+1.

@article{AIF_1997__47_2_641_0,
     author = {Zeghib, Abdelghani},
     title = {Sur les actions affines des groupes discrets},
     journal = {Annales de l'Institut Fourier},
     pages = {641--685},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {47},
     number = {2},
     year = {1997},
     doi = {10.5802/aif.1577},
     mrnumber = {98d:57068},
     zbl = {0865.57038},
     language = {fr},
     url = {http://www.numdam.org/articles/10.5802/aif.1577/}
}
TY  - JOUR
AU  - Zeghib, Abdelghani
TI  - Sur les actions affines des groupes discrets
JO  - Annales de l'Institut Fourier
PY  - 1997
SP  - 641
EP  - 685
VL  - 47
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.1577/
DO  - 10.5802/aif.1577
LA  - fr
ID  - AIF_1997__47_2_641_0
ER  - 
%0 Journal Article
%A Zeghib, Abdelghani
%T Sur les actions affines des groupes discrets
%J Annales de l'Institut Fourier
%D 1997
%P 641-685
%V 47
%N 2
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.1577/
%R 10.5802/aif.1577
%G fr
%F AIF_1997__47_2_641_0
Zeghib, Abdelghani. Sur les actions affines des groupes discrets. Annales de l'Institut Fourier, Tome 47 (1997) no. 2, pp. 641-685. doi : 10.5802/aif.1577. http://www.numdam.org/articles/10.5802/aif.1577/

[BL] Y. Benoist, F. Labourie, Sur les difféomorphismes d'Anosov affines à feuilletages stable et instable différentiables, Invent. Math., 111 (1993), 285-308. | MR | Zbl

[Car] Y. Carrière, Autour de la conjecture de L. Markus sur les variétés affines, Invent. Math., 95 (1989), 615-628. | MR | Zbl

[Fer] R. Feres, Connections preserving actions of lattices in SL(n,R), Israel. J. Math., 2, 135 (1992), 1-21. | Zbl

[Fer2] R. Feres, Actions of discrete linear groups and Zimmer's conjecture, J. Diff. Geom., 42 (1995), 554-576. | MR | Zbl

[Fri] D. Fried, Closed similarity manifolds, Comment. Math. Helv., 55 (1988), 555-565. | Zbl

[Goe] E. Goetze, Connection preserving actions of connected and discrete Lie groups, J. Diff. Geom., 40 (1994), 595-620. | MR | Zbl

[God] C. Godbillon, Feuilletages, Études géométriques, Birkhäuser, 1991.

[Gro] M. Gromov, Rigid transformation groups, Géometrie différentielle, D. Bernard et Choquet-Bruhat. éd., Travaux en cours 33, Hermann, Paris, 1988. | MR | Zbl

[Kob] S. Kobayashi, Transformation groups in differential geometry, Springer-Verlag, 1972. | MR | Zbl

[Lew] J. Lewis, The algebraic hull of a measurable cocycle, preprint.

[Pes] Y.B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Uspekhi Mat. Nauk., 32, 4 (1997), 55-114; english transl. Russian Math. Surveys 32, 4 (1977), 55-112. | Zbl

[P-R] G. Prasad, M.S. Raghunathan, Cartan subgroups and lattices in semisimple groups, Ann. Math., 96 (1972), 296-317. | MR | Zbl

[Sol] B. Solomon, On foliations of Rn+1 by minimal hypersurfaces, Comment. Math. Helvetici, 61 (1986), 67-83. | MR | Zbl

[Thu] W. Thurston, The geometry and topology of 3-manifolds, Lecture notes, Princeton University, 1978.

[Zeg1] A. Zeghib, Feuilletages géodésiques appliqués, Math. Annalen, 298 (1994), 729-759. | MR | Zbl

[Zeg2] A. Zeghib, Geodesic foliations in Lorentz 3-manifolds, preprint, 1994.

[Zeg3] A. Zeghib, Le groupe affine d'une variété riemannienne compacte, Comm. Ana. Geom., 5 (1997), 123-135. | MR | Zbl

[Zim1] R. Zimmer, On connection-preserving actions of discrete linear groups, Erg. Th. Dynam. Systems, 6 (1986), 639-644. | MR | Zbl

[Zim2] R. Zimmer, Ergodic theory and semisimple Lie groups, Birkhäuser, Boston, 1984. | MR | Zbl

[Zim3] R. Zimmer, Lattices in semisimple groups and invariant geometric structures on compact manifolds, Discrete Groups in Geometry and Analysis, R. Howe, ed., Birkhäuser, Boston, 1987, 152-210. | MR | Zbl

Cité par Sources :