On étude la réalisation des sous-groupes de comme groupes d’holonomie linéaire de courbes algébriques qui sont invariantes pour les feuilletages de .
We consider the problem of realization of a linear subgroup of as the linear holonomy group of an algebraic curve which is a leaf of a foliation of .
@article{AIF_1997__47_1_123_0, author = {Sad, Paulo}, title = {Linear holonomy groups of algebraic solutions of polynomial differential equations}, journal = {Annales de l'Institut Fourier}, pages = {123--138}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {47}, number = {1}, year = {1997}, doi = {10.5802/aif.1562}, mrnumber = {98c:32046}, zbl = {0861.32019}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1562/} }
TY - JOUR AU - Sad, Paulo TI - Linear holonomy groups of algebraic solutions of polynomial differential equations JO - Annales de l'Institut Fourier PY - 1997 SP - 123 EP - 138 VL - 47 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1562/ DO - 10.5802/aif.1562 LA - en ID - AIF_1997__47_1_123_0 ER -
%0 Journal Article %A Sad, Paulo %T Linear holonomy groups of algebraic solutions of polynomial differential equations %J Annales de l'Institut Fourier %D 1997 %P 123-138 %V 47 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1562/ %R 10.5802/aif.1562 %G en %F AIF_1997__47_1_123_0
Sad, Paulo. Linear holonomy groups of algebraic solutions of polynomial differential equations. Annales de l'Institut Fourier, Tome 47 (1997) no. 1, pp. 123-138. doi : 10.5802/aif.1562. http://www.numdam.org/articles/10.5802/aif.1562/
[1] Invariant Varieties through Singularities of Holomorphic Vector Fields, Ann. of Math., 115 (1982). | MR | Zbl
and ,[2] Sur les Fonctions de Deux Variables Complexes, Bull. des Sci. Math., 54 (1930). | JFM
,[3] Persistent Cycles for Holomorphic Foliations Having a Meromorphic First Integral, Lect. Notes in Math., 1345, Springer-Verlag (1988). | MR | Zbl
and ,[4] Theory of Stein Spaces, Springer-Verlag, 1977.
and ,[5] Lectures on Riemann Surfaces, Princeton Univ. Press, 1966. | MR | Zbl
,[6] The Origin of Limit Cycles under Pertubation of the Equation dw/dz = Rz/Rw, where R(z, w) is a Polynomial, Math. USSR Sbornik, 7 (1969). | Zbl
,[7] Complex Codimension One Foliations Leaving a Compact Submanifold Invariant, in Dynamical Systems and Bifurcation Theory, Pitman Research Notes in Math. Series, 160 (1987). | MR | Zbl
,[8] Deformations of Holomorphic Foliations having a Meromorphic First Integral, J. Reine Angew. Math., 461 (1995). | MR | Zbl
,[9] Techniques of Extension of Analytic Objects, M. Dekker, 1974. | MR | Zbl
,Cité par Sources :