Soit une variété de dimension trois compacte, orientable, irréductible avec un tore. On montre qu’il peut y avoir un nombre infini de pentes sur le bord, réalisées par le bord d’une surface essentielle, immergée, proprement plongée au bord.
Let be a compact, orientable, irreducible 3-manifold with a torus. We show that there can be infinitely many slopes on realized by the boundary curves of immersed, incompressible, - incompressible surfaces in which are embedded in a neighborhood of .
@article{AIF_1996__46_5_1443_0, author = {Baker, Mark D.}, title = {On boundary slopes of immersed incompressible surfaces}, journal = {Annales de l'Institut Fourier}, pages = {1443--1449}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {46}, number = {5}, year = {1996}, doi = {10.5802/aif.1555}, mrnumber = {98a:57023}, zbl = {0864.57015}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1555/} }
TY - JOUR AU - Baker, Mark D. TI - On boundary slopes of immersed incompressible surfaces JO - Annales de l'Institut Fourier PY - 1996 SP - 1443 EP - 1449 VL - 46 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1555/ DO - 10.5802/aif.1555 LA - en ID - AIF_1996__46_5_1443_0 ER -
%0 Journal Article %A Baker, Mark D. %T On boundary slopes of immersed incompressible surfaces %J Annales de l'Institut Fourier %D 1996 %P 1443-1449 %V 46 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1555/ %R 10.5802/aif.1555 %G en %F AIF_1996__46_5_1443_0
Baker, Mark D. On boundary slopes of immersed incompressible surfaces. Annales de l'Institut Fourier, Tome 46 (1996) no. 5, pp. 1443-1449. doi : 10.5802/aif.1555. http://www.numdam.org/articles/10.5802/aif.1555/