Une loi distributive est une façon de composer deux structures algébriques, disons et , en une structure algébrique plus complexe . Le but de ce travail est de comprendre les lois distributives en termes d’opérades. Le résultat central dit que si les opérades correspondant à et sont de Koszul, alors l’opérade correspondant à est aussi de Koszul. On donne une application à la cohomologie des espaces de configurations.
Distributive law is a way to compose two algebraic structures, say and , into a more complex algebraic structure . The aim of this paper is to understand distributive laws in terms of operads. The central result says that if the operads corresponding respectively to and are Koszul, then the operad corresponding to is Koszul as well. An application to the cohomology of configuration spaces is given.
@article{AIF_1996__46_2_307_0, author = {Markl, Martin}, title = {Distributive laws and {Koszulness}}, journal = {Annales de l'Institut Fourier}, pages = {307--323}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {46}, number = {2}, year = {1996}, doi = {10.5802/aif.1516}, mrnumber = {97i:18008}, zbl = {0853.18005}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1516/} }
TY - JOUR AU - Markl, Martin TI - Distributive laws and Koszulness JO - Annales de l'Institut Fourier PY - 1996 SP - 307 EP - 323 VL - 46 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1516/ DO - 10.5802/aif.1516 LA - en ID - AIF_1996__46_2_307_0 ER -
Markl, Martin. Distributive laws and Koszulness. Annales de l'Institut Fourier, Tome 46 (1996) no. 2, pp. 307-323. doi : 10.5802/aif.1516. http://www.numdam.org/articles/10.5802/aif.1516/
[1] Distributive laws, Lecture Notes in Mathematics, 80 (1969), 119-140. | MR | Zbl
,[2] Distributive laws, bialgebras, and cohomology, Contemporary Mathematics, to appear.
and ,[3] A compactification of configuration spaces, Annals of Mathematics, 139 (1994), 183-225. | MR | Zbl
and ,[4] Algebraic cohomology and deformation theory. In Deformation Theory of Algebras and Structures and Applications, pages 11-264. Kluwer, Dordrecht, 1988. | MR | Zbl
and ,[5] Operads, homotopy algebra, and iterated integrals for double loop spaces, preprint, 1993.
and ,[6] Koszul duality for operads, Duke Math. Journal, 76(1) (1994), 203-272. | MR | Zbl
and ,[7] Models for operads, Communications in Algebra, 24(4) (1996), 1471-1500. | MR | Zbl
,[8] The Geometry of Iterated Loop Spaces, volume 271 of Lecture Notes in Mathematics, Springer-Verlag, 1972. | MR | Zbl
,Cité par Sources :