On considère les feuilletages holomorphes singuliers de codimension 1 dans le projectif complexe de dimension qui admettent une composante de Kupka compacte . On montre que les classes de Chern du fibré tangent à se comportent comme les classes de Chern d’une intersection complète et, comme corollaire, on déduit que est une intersection complète dans certains cas.
We will consider codimension one holomorphic foliations represented by sections , and having a compact Kupka component . We show that the Chern classes of the tangent bundle of behave like Chern classes of a complete intersection 0 and, as a corollary we prove that is a complete intersection in some cases.
@article{AIF_1994__44_4_1219_0, author = {Calvo-Andrade, Omegar and Soares, Marcio G.}, title = {Chern numbers of a {Kupka} component}, journal = {Annales de l'Institut Fourier}, pages = {1219--1236}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {44}, number = {4}, year = {1994}, doi = {10.5802/aif.1431}, mrnumber = {95m:32045}, zbl = {0811.32024}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1431/} }
TY - JOUR AU - Calvo-Andrade, Omegar AU - Soares, Marcio G. TI - Chern numbers of a Kupka component JO - Annales de l'Institut Fourier PY - 1994 SP - 1219 EP - 1236 VL - 44 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1431/ DO - 10.5802/aif.1431 LA - en ID - AIF_1994__44_4_1219_0 ER -
%0 Journal Article %A Calvo-Andrade, Omegar %A Soares, Marcio G. %T Chern numbers of a Kupka component %J Annales de l'Institut Fourier %D 1994 %P 1219-1236 %V 44 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1431/ %R 10.5802/aif.1431 %G en %F AIF_1994__44_4_1219_0
Calvo-Andrade, Omegar; Soares, Marcio G. Chern numbers of a Kupka component. Annales de l'Institut Fourier, Tome 44 (1994) no. 4, pp. 1219-1236. doi : 10.5802/aif.1431. http://www.numdam.org/articles/10.5802/aif.1431/
[B] Some properties of stable rank-2 vector bundles on Pn, Math. Ann., 226 (1977), 125-150. | MR | Zbl
,[BB] Singularities of holomorphic foliations, Journal on Differential Geometry, 7 (1972), 279-342. | MR | Zbl
, ,[BCh] On smooth subcanonical varieties of codimension 2 in Pn n ≥ 4, Annali di Matematica, (1983), 99-117. | MR | Zbl
, ,[CL] Codimension one holomorphic foliations with Kupka components.
, ,[GS] Komplexe Unterräume und holomorphe Vektorraumbündel von Rang zwei, Math. Ann., 230 (1977), 75-90. | MR | Zbl
, ,[GH] Principles of Algebraic Geometry, Pure & Applied Math., Wiley Intersc., New York, 1978. | Zbl
, ,[G] Topologie algébrique et théorie de faisceaux, Actualités Scientifiques et Industrielles, Herman, Paris, 1952.
,[GML] A structural stability of foliations with a meromorphic first integral, Topology, 30 (1990), 315-334. | Zbl
, ,[H] Varieties of small codimension in projective space, Bull. of the AMS, 80 (1974), 1017-1032. | MR | Zbl
,[H1] Stable vector bundles of rank 2 on P3, Math. Ann., 238 (1978), 229-280. | MR | Zbl
,[HS] A computer aided approach to codimension 2 subvarieties of Pn, n ≥ 6, J. Reine Angew. Math., 357 (1985), 205-220. | MR | Zbl
, ,[M] Structural stability of integrable differential forms, Geometry and Topology, LNM, Springer, New York, 1977, pp. 395-428. | MR | Zbl
,[OSS] Vector Bundles on Complex Projective spaces, Progress in Math., 3, Birkhauser, Basel, 1978.
, , ,[R] On projective varieties of codimension 2, Invent. Math., 73 (1983), 333-336. | MR | Zbl
,Cité par Sources :