Constructive invariant theory for tori
Annales de l'Institut Fourier, Tome 43 (1993) no. 4, pp. 1055-1066.

Considérons une représentation rationnelle d’un tore algébrique T sur un espace vectoriel V. Soit {f 1 ,,f p } un ensemble générateur homogène minimal pour l’anneau des invariants k[V] T . De nouvelles bornes supérieures sont établies pour le nombre N V,T := max { deg f i }. Ces bornes sont exprimées en termes du volume de l’enveloppe convexe des poids de V et d’autres données géométriques. De plus on décrit un algorithme pour construire un ensemble partiel (essentiellement unique) {f 1 ,,f s } dont les éléments sont des monômes et tel que k[V] T soit intègre sur k[f 1 ,,f s ].

Consider a rational representation of an algebraic torus T on a vector space V. Suppose that {f 1 ,,f p } is a homogeneous minimal generating set for the ring of invariants, k[V] T . New upper bounds are derived for the number N V,T := max { deg f i }. These bounds are expressed in terms of the volume of the convex hull of the weights of V and other geometric data. Also an algorithm is described for constructing an (essentially unique) partial set of generators {f 1 ,,f s } consisting of monomials and such that k[V] T is integral over k[f 1 ,,f s ].

@article{AIF_1993__43_4_1055_0,
     author = {Wehlau, David},
     title = {Constructive invariant theory for tori},
     journal = {Annales de l'Institut Fourier},
     pages = {1055--1066},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {43},
     number = {4},
     year = {1993},
     doi = {10.5802/aif.1364},
     mrnumber = {95c:14068},
     zbl = {0789.14009},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.1364/}
}
TY  - JOUR
AU  - Wehlau, David
TI  - Constructive invariant theory for tori
JO  - Annales de l'Institut Fourier
PY  - 1993
SP  - 1055
EP  - 1066
VL  - 43
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.1364/
DO  - 10.5802/aif.1364
LA  - en
ID  - AIF_1993__43_4_1055_0
ER  - 
%0 Journal Article
%A Wehlau, David
%T Constructive invariant theory for tori
%J Annales de l'Institut Fourier
%D 1993
%P 1055-1066
%V 43
%N 4
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/aif.1364/
%R 10.5802/aif.1364
%G en
%F AIF_1993__43_4_1055_0
Wehlau, David. Constructive invariant theory for tori. Annales de l'Institut Fourier, Tome 43 (1993) no. 4, pp. 1055-1066. doi : 10.5802/aif.1364. http://www.numdam.org/articles/10.5802/aif.1364/

[B] A. Brondsted, An Introduction to Convex Polytopes, Springer-Verlag, Berlin-Heidelberg-New York, 1983. | MR | Zbl

[EW] G. Ewald, U. Wessels, On the ampleness of invertible sheaves in complete projective toric varieties, Results in Math., (1991), 275-278. | MR | Zbl

[Ga] F.R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea Publishing Company, New York, 1959. | Zbl

[Go] P. Gordan, Invariantentheorie, Chelsea Publishing Company, New York, 1987.

[K] G. Kempf, Computing Invariants, S. S. Koh (Ed.) Invariant Theory, Lect. Notes Math., 1278, 81-94, Springer-Verlag, Berlin-Heidelberg-New York, 1987. | MR | Zbl

[N1] E. Noether, Der endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann., 77 (1916), 89-92. | JFM

[N2] E. Noether, Der endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik p., Nachr. v. d. Ges. Wiss. zu Göttingen, (1926), 485-491. | JFM

[O] T. Oda, Convex Bodies and Algebraic Geometry, Ergeb. Math. und Grenzgeb., Bd. 15, Springer-Verlag, Berlin-Heidelberg-New York, 1988. | Zbl

[P] V.L. Popov, Constructive Invariant Theory, Astérisque, 87/88 (1981), 303-334. | Numdam | MR | Zbl

[R] H.J. Ryser, Maximal Determinants in Combinatorial Investigations, Can. Jour. Math., 8 (1956), 245-249. | MR | Zbl

[S] B. Schmid, Finite Groups and Invariant Theory, M.-P. Malliavin (Ed.) Topics in Invariant Theory (Lect. Notes Math. 1478), 35-66, Springer-Verlag, Berlin-Heidelberg-New York, 1991. | MR | Zbl

[St] R.P. Stanley, Combinatorics and Commutative Algebra, Progress in Mathematics, 41, Birkhäuser, Boston-Basel-Stuttgart, 1983. | MR | Zbl

[W] D. Wehlau, The Popov Conjecture for Tori, Proc. Amer. Math. Soc., 114 (1992), 839-845. | MR | Zbl

Cité par Sources :