Uniform estimates for the Cauchy-Riemann equation on q-convex wedges
Annales de l'Institut Fourier, Tome 43 (1993) no. 2, pp. 383-436.

Dans ce travail on résoud l’équation de Cauchy-Riemann avec des estimées höldériennes dans une intersection de domaines q-convexes. Plus précisément si D n est défini par des inégalités {ρ i 0}, où les hypersurfaces réelles {ρ i 0} sont transverses et les combinaisons linéaires non nulles à coefficients positifs des formes de Levi des ρ i ont toutes au moins (q+1) valeurs propres strictement positives, on résoud, en utilisant des formules intégrales, l’équation ¯f=g, où g est une (n,r)-forme différentielle continue, ¯-fermée dans D,n-qrn, avec les estimées suivantes : si d désigne la distance au bord de D, et si d β g est bornée alors pour tout ε>0, f est höldérienne d’ordre 1/2-β-ε si 0β<1/2 et d β+ε-1/2 f est bornée si 1/2β<1.

We study the ¯-equation with Hölder estimates in q-convex wedges of n by means of integral formulas. If D n is defined by some inequalities {ρ i 0}, where the real hypersurfaces {ρ i =0} are transversal and any nonzero linear combination with nonnegative coefficients of the Levi form of the ρ i ’s have at least (q+1) positive eigenvalues, we solve the equation ¯f=g for each continuous (n,r)-closed form g in D, n-qrn, with the following estimates: if d denotes the distance to the boundary of D and if d β g is bounded, then for all ε>0, f is Hölder continuous with exponent 1/2-β-ε if 0β<1/2 and d β+ε-1/2 f is bounded if 1/2β<1.

@article{AIF_1993__43_2_383_0,
     author = {Laurent-Thi\'ebaut, Christine and Leiterer, Jurgen},
     title = {Uniform estimates for the {Cauchy-Riemann} equation on $q$-convex wedges},
     journal = {Annales de l'Institut Fourier},
     pages = {383--436},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {43},
     number = {2},
     year = {1993},
     doi = {10.5802/aif.1338},
     mrnumber = {95a:32025},
     zbl = {0782.32014},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.1338/}
}
TY  - JOUR
AU  - Laurent-Thiébaut, Christine
AU  - Leiterer, Jurgen
TI  - Uniform estimates for the Cauchy-Riemann equation on $q$-convex wedges
JO  - Annales de l'Institut Fourier
PY  - 1993
SP  - 383
EP  - 436
VL  - 43
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.1338/
DO  - 10.5802/aif.1338
LA  - en
ID  - AIF_1993__43_2_383_0
ER  - 
%0 Journal Article
%A Laurent-Thiébaut, Christine
%A Leiterer, Jurgen
%T Uniform estimates for the Cauchy-Riemann equation on $q$-convex wedges
%J Annales de l'Institut Fourier
%D 1993
%P 383-436
%V 43
%N 2
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/aif.1338/
%R 10.5802/aif.1338
%G en
%F AIF_1993__43_2_383_0
Laurent-Thiébaut, Christine; Leiterer, Jurgen. Uniform estimates for the Cauchy-Riemann equation on $q$-convex wedges. Annales de l'Institut Fourier, Tome 43 (1993) no. 2, pp. 383-436. doi : 10.5802/aif.1338. http://www.numdam.org/articles/10.5802/aif.1338/

[AiHe] R.A. Airapetjan, G.M. Henkin, Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions, Usp. Mat. Nauk, 39 (1984), 39-106, [Engl. trans. Russ. Math. Surv., 39 (1984), 41-118 and : Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions II, Matem. Sbornik, 127 (169) (1985), 1, [Engl. trans. Math. USSR Sbornik, 55 (1986), 1, 91-111]. | Zbl

[AnG] A. Andreotti, H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259. | Numdam | MR | Zbl

[AnHi1] A. Andreotti, C.D. Hill, E. E. Levi convexity and the Hans Lewy problem. Part I : Reduction to vanishing theorems, Ann. Scuola Norm. Sup. Pisa, 26 (1972), 325-363. | Numdam | MR | Zbl

[AnHi2] A. Andreotti, C.D. Hill, E. E. Levi convexity and the Hans Lewy problem. Part II : Vanishing theorems, Ann. Scuola Norm. Sup. Pisa, 26 (1972), 747-806. | Numdam | MR | Zbl

[BFi] B. Fischer, The Cauchy-Riemann equation in spaces with uniform weights, Math. Nachr., 156 (1992), 45-55. | MR | Zbl

[FiLi] W. Fischer, I. Lieb, Lokale Kerne und beschränkte Lösungen für den ∂-Operator auf q-konvexen Gebieten, Math. Ann., 208 (1974) 249-265. | MR | Zbl

[He1] G.M. Henkin, The Lewy equation and analysis on pseudoconvex manifolds (russ.), Usp. Mat. Nauk, 32 (1977), 57-118, [Engl. trans. Russ. Math. Surv., 32 (1977), 59-130]. | MR | Zbl

[He2] G.M. Henkin, Solution des équations de Cauchy-Riemann tangentielles sur des variétés de Cauchy-Riemann q-convexes, C. R. Acad. Sci. Paris, Sér. I Math, 292 (1981), 27-30. | MR | Zbl

[He3] G.M. Henkin, Analytic representation for CR-functions on submanifolds of codimension 2 in ℂn, Lecture Notes in Math. Springer, 798 (1980), 169-191. | MR | Zbl

[He4] G.M. Henkin, The method of integral representations in complex analysis (russ.). In : Sovremennge problemy matematiki, Fundamentalnye napravlenija, Moscow Viniti, 7 (1985), 23-124, [Engl. trans. in : Encyclopedia of Math. Sci., Several complex variables I, Springer-Verlag, 7 (1990), 19-116]. | Zbl

[HeLe1] G.M. Henkin, J. Leiterer, Theory of functions on complex manifolds, Akademie-Verlag Berlin and Birkhäuser-Verlag Boston, 1984. | Zbl

[HeLe2] G.M. Henkin, J. Leiterer, Andreotti-Grauert theory by integral formulas, Akademie-Verlag Berlin and Birkhäuser-Verlag Boston (Progress in Math. 74) (1988). | MR | Zbl

[LiR] I. Lieb, R.M. Range, Estimates for a class of integral operators and applications to the ∂-Neumann problem, Invent. Math., 85 (1986), 415-438. | MR | Zbl

[M] J. Michel, Randregularität des ∂-Problems für stückweise streng pseudokonvexe Gebeite in ℂn, Math. Ann., 280 (1988) 46-68. | MR | Zbl

[N1] M. Nacinovich, On strict Levi q-convexity and q-concavity on domains with piecewise smooth boundaries, Math. Ann., 281 (1988), 459-482. | MR | Zbl

[N2] M. Nacinovich, On a theorem of Airapetjan and Henkin, Seminari di Geometria 1988-1991, Univ. Bologna (1991), 99-135. | Zbl

[RS] R.M. Range, Y.T. Siu, Uniform estimates for the ∂-equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann., 206 (1973), 325-354. | MR | Zbl

[T] F. Treves, Homotopy formulas in the tangential Cauchy-Riemann complex, Mem. Ann. Math. Soc, 434 (1990). | MR | Zbl

Cité par Sources :