Soient une variété compacte et un groupe fini opérant librement sur , et soit l’espace (de Fréchet) des métriques -invariantes sur . Il est naturel de conjecturer que, pour une métrique générique, tous les espaces propres du laplacien sont irréductibles, en tant que représentations orthogonales de . (Dans le langage de la physique nous dirions que, génériquement, il n’y a pas de “dégénérescences accidentelles”.) Nous prouvons cette conjecture lorsque dim dim pour toutes les représentations irréductibles de . Comme application, nous construisons des variétés isospectrales à spectres simples.
Let be a compact manifold let be a finite group acting freely on , and let be the (Fréchet) space of -invariant metric on . A natural conjecture is that, for a generic metric in , all eigenspaces of the Laplacian are irreducible (as orthogonal representations of ). In physics terminology, no “accidental degeneracies” occur generically. We will prove this conjecture when dim dim for all irreducibles of . As an application, we construct isospectral manifolds with simple eigenvalue spectra.
@article{AIF_1990__40_2_407_0, author = {Zelditch, Steven}, title = {On the generic spectrum of a riemannian cover}, journal = {Annales de l'Institut Fourier}, pages = {407--442}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {40}, number = {2}, year = {1990}, doi = {10.5802/aif.1219}, mrnumber = {91g:58294}, zbl = {0722.58044}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1219/} }
TY - JOUR AU - Zelditch, Steven TI - On the generic spectrum of a riemannian cover JO - Annales de l'Institut Fourier PY - 1990 SP - 407 EP - 442 VL - 40 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.1219/ DO - 10.5802/aif.1219 LA - en ID - AIF_1990__40_2_407_0 ER -
Zelditch, Steven. On the generic spectrum of a riemannian cover. Annales de l'Institut Fourier, Tome 40 (1990) no. 2, pp. 407-442. doi : 10.5802/aif.1219. http://www.numdam.org/articles/10.5802/aif.1219/
[Al] Generic properties of eigenfunctions of elliptic partial differential equations, Trans. Am. Math. Soc., 238 (1978), 341-354. | MR | Zbl
,[Ad] Lectures on Lie Groups, Univ. Chicago Press, 1969. | MR | Zbl
,[Ar] Modes and Quasimodes, Fun. Anal. and App., 6 (1972), 44. | MR | Zbl
,[BaUr] Generic properties of the eigenvalues of the Laplacian for compact riemannian manifolds, Tôhoku Math. J., 35 (1983), 155-172.
and ,[Be1] On the multiplicity of eigenvalues of the Laplacian, SLN 1339, Springer-Verlag, (1988), 32-53. | MR | Zbl
,[Be2] Propriétés génériques des fonctions propres et multiplicités, preprint (1989). | MR | Zbl
,[B1Wi1] Splitting the spectrum of a Riemannian manifold, SIAM J. Math. Anal., 11 (5) (1980), 813-818. | MR | Zbl
and ,[BröT-D] Representations of Compact Lie Groups, Grad. Texts, Springer-Verlag, 98 (1985). | MR | Zbl
and ,[Bro] Constructing isospectral manifolds, Am. Math. Monthly, 95 (1988), 823-839. | MR | Zbl
,[D] G-spaces, the asymptotic splitting of L2(M) into irreducibles, Math. Ann., 237 (1978), 23-40. | MR | Zbl
,[H] The Analysis of Linear Partial Differential Operators III, Springer-Verlag, 1985. | Zbl
,[K] Elements of the Theory of Representations, Springer-Verlag, 1976. | MR | Zbl
,[PSa] The Weyl theorem and the deformation of discrete groups, Comm. P.A.M., 38 (1985), 853-866. | MR | Zbl
and ,[SeT] A textbook of topology, Academic Press, 1980.
and ,[Su] Riemannian coverings and isospectral manifolds, Ann. Math., 121 (1985), 169-186. | MR | Zbl
.,[U] Generic properties of eigenfunctions, Amer. J. Math., 98 (1976), 1059-1078. | MR | Zbl
,[Wig] Group Theory and its Applications to the Quantum, Mechanics of Atomic Spectra, Academic Press, 1959. | Zbl
,[Z] Isospectrality in the category of Fourier integral operators I, preprint (1990). | Zbl
,Cité par Sources :