On prouve : Toute famille locale analytique de germes d’espaces analytiques admet un plus grand sous-espace de au-dessus duquel elle soit triviale. En plus, la réduction de est égale au germe des points de tels que , soit isomorphe à la fibre spéciale .
We prove: For a local analytic family of analytic space germs there is a largest subspace in such that the family is trivial over . Moreover the reduction of equals the germ of those points in for which is isomorphic to the special fibre .
@article{AIF_1989__39_4_831_0, author = {Hauser, H. and Muller, G.}, title = {The trivial locus of an analytic map germ}, journal = {Annales de l'Institut Fourier}, pages = {831--844}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {39}, number = {4}, year = {1989}, doi = {10.5802/aif.1191}, mrnumber = {91m:32035}, zbl = {0678.32013}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1191/} }
TY - JOUR AU - Hauser, H. AU - Muller, G. TI - The trivial locus of an analytic map germ JO - Annales de l'Institut Fourier PY - 1989 SP - 831 EP - 844 VL - 39 IS - 4 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.1191/ DO - 10.5802/aif.1191 LA - en ID - AIF_1989__39_4_831_0 ER -
Hauser, H.; Muller, G. The trivial locus of an analytic map germ. Annales de l'Institut Fourier, Tome 39 (1989) no. 4, pp. 831-844. doi : 10.5802/aif.1191. http://www.numdam.org/articles/10.5802/aif.1191/
[A] Algebraic approximation of structures over complete local rings, Publ. Math. IHES, 36 (1969), 23-58. | Numdam | MR | Zbl
,[D] Complete families of deformations of germs of complex spaces, Math. USSR-Sbornik, 18 (1972), 397-406. | MR | Zbl
,[E] Isosingular loci and the cartesian product structure of complex analytic singularities, Trans. Am. Math. Soc., 241 (1978), 357-371. | MR | Zbl
,[Fi] Complex analytic geometry, Springer Lect. Notes, 538, 1976. | MR | Zbl
,[FiG] Lokal-triviale Familien kompakter komplexer Mannig-faltigkeiten, Nachr. Akad. Wiss. Göttingen, Math.-Phys. K1. II, 6 (1965), 89-94. | MR | Zbl
, ,[FIK] On locally trivial deformations, Publ. Res. Inst. Math. Sci., 23 (1987), 627-665. | MR | Zbl
, ,[GaH] Characterizing singularities of varieties and of mappings, Invent. Math., 81 (1985), 427-447. | MR | Zbl
, ,[GrK] Families cf varieties with prescribed singularities, Compos. Math., 69 (1989), 83-110. | Numdam | MR | Zbl
, ,[H] Linear algebraic groups, Springer, 1975. | MR | Zbl
,[M] Stability of C∞-mappings, III : Finitely determined map germs, Publ. Math. IHES, 35 (1968), 127-156. | Numdam | MR | Zbl
,[PfPo] Die strenge Approximationseigenschaft lokaler Ringe, Invent. Math., 30 (1975), 145-174. | MR | Zbl
, ,[Se] Analytic products, Am. J. Math., 91 (1969), 577-590. | MR | Zbl
,[Sc] Sur Theorie der Deformationen kompakter komplexer Räume, Invent. Math., 9 (1970), 284-294. | MR | Zbl
,[T] The hunting of invariants in the geometry of discriminants, In : Real and complex singularities, Oslo 1976, 565-677. Holm, P., (ed.), Sijthoff and Noordhoff, 1977. | Zbl
,[V] Lie groups, Lie algebras, and their representations, Prentice Hall, 1974. | MR | Zbl
,[W] A theorem on solutions of analytic equations with applications to deformations of complex structures, Math. Ann., 216 (1975), 127-142. | MR | Zbl
,Cité par Sources :