Nous étudions l’asymptotique semi-classique de l’amplitude de diffusion pour l’opérateur de Schrödinger . Nous obtenons une formule asymptotique pour des niveaux d’énergie sans trajectoire captée. De plus la méthode s’applique à l’étude de l’amplitude de diffusion à basse énergie, pour une classe de potentiels répulsifs décroissants assez lentement (non nécessairement à symétrie sphérique).
We study the semi-classical asymptotic behavior as of scattering amplitudes for Schrödinger operators . The asymptotic formula is obtained for energies fixed in a non-trapping energy range and also is applied to study the low energy behavior of scattering amplitudes for a certain class of slowly decreasing repulsive potentials without spherical symmetry.
@article{AIF_1989__39_1_155_0, author = {Robert, Didier and Tamura, H.}, title = {Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits}, journal = {Annales de l'Institut Fourier}, pages = {155--192}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {39}, number = {1}, year = {1989}, doi = {10.5802/aif.1162}, mrnumber = {91c:35116}, zbl = {0659.35026}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1162/} }
TY - JOUR AU - Robert, Didier AU - Tamura, H. TI - Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits JO - Annales de l'Institut Fourier PY - 1989 SP - 155 EP - 192 VL - 39 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.1162/ DO - 10.5802/aif.1162 LA - en ID - AIF_1989__39_1_155_0 ER -
%0 Journal Article %A Robert, Didier %A Tamura, H. %T Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits %J Annales de l'Institut Fourier %D 1989 %P 155-192 %V 39 %N 1 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.1162/ %R 10.5802/aif.1162 %G en %F AIF_1989__39_1_155_0
Robert, Didier; Tamura, H. Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits. Annales de l'Institut Fourier, Tome 39 (1989) no. 1, pp. 155-192. doi : 10.5802/aif.1162. http://www.numdam.org/articles/10.5802/aif.1162/
[1] Spectral properties of Schrödinger operators and scattering theory, Ann. Norm. Sup. Pisa, 2 (1975), 151-218. | Numdam | MR | Zbl
,[2] Some new results in spectral and scattering theory of differential operators on Rn, Séminaire Goulaouic-Schwartz, École Polytechnique, 1978. | Numdam | Zbl
,[3] The low energy expansion in nonrelativistic scattering theory, Ann. Inst. Henri Poincaré, 37 (1982), 1-28. | Numdam | MR | Zbl
, and ,[4] Low-energy parameters in nonrelativistic scattering theory, Ann. Phys., 148 (1983), 308-326. | MR | Zbl
, and ,[5] Finite total cross sections in nonrelativistic quantum mechanics, Comm. Math. Phys., 76 (1980), 177-209. | MR | Zbl
and ,[6] Total cross sections in nonrelativistic scattering theory, Quantum Mechanics in Mathematics, Chemistry and Physics, edited by K.E. Gustafson and W. P. Reinhart, Plenum Press, 1981.
and ,[7] Principe d'absorption limite pour des opérateurs de Schrödinger à longue portée, Université de Paris-Sud, preprint, 1987. | Zbl
and ,[8] Modified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo Sect. IA, 32 (1985), 77-104. | MR | Zbl
and[9] Scattering matrices for two-body Schrödinger operators, Sci. Papers College Arts Sci. Univ. Tokyo, 35 (1985), 81-107. | MR | Zbl
and ,[10] A remark on the microlocal resolvent estimates for two-body Schrödinger operators, Publ. RIMS Kyoto Univ., 21 (1985), 889-910. | MR | Zbl
and ,[11] Scattering by long-range potentials at low energies, Theoretical and Mathematical Physics, 59 (1984), 629-633.
,[12] Semi-classical Approximation in Quantum Mechanics, Reidel, 1981. | MR | Zbl
and ,[13] Quasiclassical asymptotics of the scattering amplitude for the scattering of a plane wave by inhomogeneities of the medium, Math. USSR Sbornik, 45 (1983), 487-506. | Zbl
,[14] Autour de l'approximation Semi-classique, Birkhaüser, 1987. | MR | Zbl
,[15] Semi-classical estimates for resolvents and asymptotics for total scattering cross-sections, Ann. Inst. Henri Poincaré, 46 (1987), 415-442. | EuDML | Numdam | MR | Zbl
and ,[16] Quasi-classical approximation in stationary scattering problems, Func. Anal. Appl., 11 (1977), 247-257. | Zbl
,[17] Time-decay of scattering solutions and resolvent estimates for semi-classical Schrödinger operators, Université de Nantes, preprint, 1986.
,[18] The quasi-classical limit of scattering amplitude — L2 — approach for short range potentials — Japan J. Math., 13 (1987), 77-126. | MR | Zbl
,[19] Methods of Modern Mathematical Physics, III: Scattering Theory, Academic Press, 1979. | MR | Zbl
and ,[20] Scattering Theory of Waves and Particles, 2nd édition, Springer, 1982. | MR | Zbl
,Cité par Sources :