On étudie la structure du système de Gauss-Manin filtré associé à une fonction holomorphe à singularité isolée, et on obtient une base du réseau de Brieskorn sur telle que l’action de s’écrit
pour deux matrices avec semi-simple, où est la base. Comme application, on calcule la -fonction de dans le cas en deux variables.
We study the structure of the filtered Gauss-Manin system associated to a holomorphic function with an isolated singularity, and get a basis of the Brieskorn lattice over such that the action of is expressed by
for two matrices with semi-simple, where is the basis. As an application, we calculate the -function of in the case of two variables.
@article{AIF_1989__39_1_27_0, author = {Saito, Morihiko}, title = {On the structure of {Brieskorn} lattice}, journal = {Annales de l'Institut Fourier}, pages = {27--72}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {39}, number = {1}, year = {1989}, doi = {10.5802/aif.1157}, mrnumber = {91i:32035}, zbl = {0644.32005}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1157/} }
Saito, Morihiko. On the structure of Brieskorn lattice. Annales de l'Institut Fourier, Tome 39 (1989) no. 1, pp. 27-72. doi : 10.5802/aif.1157. http://www.numdam.org/articles/10.5802/aif.1157/
[B] Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math., 2 (1970), 103-161. | MR | Zbl
,[BGM] Sur le polynôme de Bernstein des singularités semi quasihomogènes, Prépublication de l'Université de Nice, n° 138, novembre 1986.
, and ,[BM] Idéaux de germes d'opérateurs différentiels à une variable, Enseign. Math., 30 (1984), 7-38. | Zbl
and ,[Bo] D-modules holonômes réguliers en une variable, in Mathématique et Physique, Prog. in Math., Birkhäuser, 37, (1983), 281-288.
,[CN1] Étude du comportement du polynôme de Bernstein lors d'une déformation à µ constant de Xa + Yb avec (a, b) = 1, Compositio Math., 63 (1987), 291-313. | Numdam | MR | Zbl
,[CN2] Calculs explicites sur les singularités isolées semi quasihomogènes. II, preprint.
,[D1] Équations différentielles à points singuliers réguliers, Lect. Notes in Math., 163, Springer, (1970). | MR | Zbl
,[D2] Théorie de Hodge II, Publ. Math. IHES, 40, (1971), 5-58. | Numdam | MR | Zbl
,[K1] B-function and holonomic systems, Invent. Math., 38 (1976), 33-53. | MR | Zbl
,[K2] Introduction to Microlocal Analysis, Enseign. Math., 32 (1986), 227-259. | MR | Zbl
,[K3] Vanishing cycle sheaves and holonomic systems of differential equations, in Algebric Geometry, Lect. Notes in Math., Springer, 1016, (1983), 134-142. | MR | Zbl
,[KK] On the holomic systems of microdifferential equations III, Systems with regular singularites, Publ. RIMS, Kyoto Univ., 17 (1981), 813-979. | MR | Zbl
and ,[Ka] The regularity theorem in Algebraic Geometry, Act. Congrès Intern. Math., (1970), 437-443. | MR | Zbl
,[Lo] On the semi-universal deformation of a simple-elliptic hypersurface singularity, part II : The discrimiant, Topology, 17 (1978), 17-32. | MR | Zbl
,[M1] Intégrales asymptotiques et monodromie, Ann. Sci. École Norm. Sup. Paris (4), 7 (1974), 405-430. | Numdam | MR | Zbl
,[M2] Le polynôme de Bersnstein d'une singularité isolée, in Lect. Notes in Math., Springer, 459, (1975), 98-119. | MR | Zbl
,[M3] Déformations de systèmes différentiels et microdifférentiels, in Mathématique et Physique, Prog. in Math., Birkhäuser, 37, (1983), 353-379. | MR | Zbl
,[M4] Deformations of differentiel systems. II, Journal of the Ramanujan Math. Soc., 1 (1986), 3-15. | MR | Zbl
,[O] K. Saito's period map for holomorphic functions with isolated critical points, Advanced Studies in Pure Math., 10 (1987), 591-648. | MR | Zbl
,[Ph] Singularités des Systèmes Différentiels de Gauss-Manin, Prog. in Math., Birkhäuser, 2, (1979). | MR | Zbl
,[S1] Gauss-Manin system and mixed Hodge structure, Proc. Japan Acad., 58 (A) (1982), 29-32 ; Supplement, in Astérisque, 101/102 (1983), 320-331. | MR | Zbl
,[S2] Hodge filtrations on Gauss-Manin systems I, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math., 30 (1984), 489-498 ; II, Proc. Japan Acad., 59 (A) (1983), 37-40. | Zbl
,[S3] On the structure of Brieskorn lattices (preprint at Grenoble Sept. 1983).
,[S4] Hodge structure via filtered D-Modules, Astérisque, 130 (1985), 342-351. | Numdam | MR | Zbl
,[S5] Modules de Hodge polarisables, to appear in Publ. RIMS. | Zbl
,[S6] Mixed Hodge Modules, preprint RIMS-585, July 1987.
,[S7] Exponents and Newton polyhedra for isolated hypersurface singularities, to appear in Math. Ann. | Zbl
,[Sk] Period mapping associated to a primitive form, Publ. RIMS, Kyoto Univ., 19 (1983), 1231-1264. | MR | Zbl
,[SKK] Microfunctions and pseudo-differential equations, Lect. Notes in Math., Springer, 287, (1973), 264-529. | MR | Zbl
, and ,[SS] On the mixed Hodge structure on the cohomology of the Milnor fiber, Math. Ann., 271 (1985), 641-665. (This is the corrected version of the preprint quoted in [S1][S2]). | MR | Zbl
and ,[Se] Algèbre locale, multiplicités, Lect. Notes in Math., Springer 11, (1975). | Zbl
,[St] Mixed Hodge structure on the vanishing cohomology, in Real and Complex Singularities, Sijthoff & Noordhoff, Alphen aan den Rijn, (1977), 525-563. | MR | Zbl
,[V1] The asymptotics of holomorphic forms determine a mixed Hodge structure, Soviet Math. Dokl., 22 (1980), 772-775. | MR | Zbl
,[V2] On the monodromy operator in vanishing cohomology and the operator of multiplication by f in the local ring, Soviet Math. Dokl., 24 (1981), 248-252. | Zbl
,[V3] The complex exponent of a singularity does not change along strata µ = const, Func. Anal. Appl., 16 (1982), 1-9. | MR | Zbl
,[V4] A lower bound for the codimension of the strata µ = const in terms of the mixed Hodge structure, Moscow Univ. Math. Bull., 37-6 (1982), 30-33. | MR | Zbl
,Cité par Sources :