Soit une fonction bornée sur ; on définit le multiplicateur avec un symbole (noté par ) par , . On étudie des conditions sur qui garantissent “l’inégalité interpolationnelle” (ici , est entre 0 et 1 et ne dépend pas de ). Cette inégalité exprime une sorte de régularité de sur . (Pour la plupart les multiplicateurs en question ne sont pas de type faible (1,1).) On utilise ces résultats pour démontrer qu’il y a bien des sous-ensembles de tels que chaque suite positive dans puisse être majorée par la suite pour une fonction continue dont le spectre soit inclus dans .
If is a bounded function on , the multiplier with symbol (denoted by is defined by , . We give some conditions on ensuring the “interpolation inequality” (here and is between 0 and 1). In most cases considered fails to have stronger -regularity properties (e.g. fails to be of weak type (1,1)). The results are applied to prove that for many sets every positive sequence in can be majorized by the sequence for some continuous funtion with spectrum in .
@article{AIF_1988__38_2_147_0, author = {Kislyakov, Serguei V.}, title = {Fourier coefficients of continuous functions and a class of multipliers}, journal = {Annales de l'Institut Fourier}, pages = {147--183}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {38}, number = {2}, year = {1988}, doi = {10.5802/aif.1138}, mrnumber = {89j:42004}, zbl = {0607.42004}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1138/} }
TY - JOUR AU - Kislyakov, Serguei V. TI - Fourier coefficients of continuous functions and a class of multipliers JO - Annales de l'Institut Fourier PY - 1988 SP - 147 EP - 183 VL - 38 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.1138/ DO - 10.5802/aif.1138 LA - en ID - AIF_1988__38_2_147_0 ER -
%0 Journal Article %A Kislyakov, Serguei V. %T Fourier coefficients of continuous functions and a class of multipliers %J Annales de l'Institut Fourier %D 1988 %P 147-183 %V 38 %N 2 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.1138/ %R 10.5802/aif.1138 %G en %F AIF_1988__38_2_147_0
Kislyakov, Serguei V. Fourier coefficients of continuous functions and a class of multipliers. Annales de l'Institut Fourier, Tome 38 (1988) no. 2, pp. 147-183. doi : 10.5802/aif.1138. http://www.numdam.org/articles/10.5802/aif.1138/
[1] Bilinear forms on Hé and bounded bianalytic functions, Trans. Amer. Math. Soc., 286, N° 1 (1984), 313-337. | MR | Zbl
,[2] Extension of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83, N° 4 (1977), 569-645. | MR | Zbl
, ,[3] Sur les coefficients de Fourier des fonctions continues, C. R. Acad. Sci. Paris, Sér. A, 285, N° 16 (1977), 1001-1003. | MR | Zbl
, , ,[4] Weighted norm inequalities and related topics, North Holland, Amsterdam, New York, Oxford, 1985. | MR | Zbl
, ,[5] Free interpolation in the space of uniformly convergent Taylor series, Lecture Notes Math., 864, Springer, Berlin, 1981, 171-213. | MR | Zbl
( ), ,[6] On reflexive subspaces of the space C*A, Funktsionalnyi Anal. i ego Prilozhen., 13, No 1 (1979), 21-30 (Russian). | Zbl
,[7] Fourier coefficients of boundary values of functions analytic in the disc and in the bidisc, Trudy Matem. Inst. im. V. A. Steklova, 155 (1981), 77-94 (Russian). | MR | Zbl
,[8] A substitute for the weak type (1, 1) inequality for multiple Riesz projections, Linear and Complex Analysis Problem Book, Lecture Notes Math., 1043, Springer, Berlin, 1984, 322-324.
,[9] Nouveaux théorèmes de Nikishin (suite et fin), Séminaire Maurey-Schwartz, 1973-1974, Exposé No V, École Polytechnique, Paris, 1974. | Numdam | Zbl
,[10] Trigonometric series with gaps, J. Math. Mech., 9, N° 2 (1960), 203-227. | MR | Zbl
,[11] Maximal inequalities of weak type, Ann. Math., 84, N° 1 (1966), 157-173. | MR | Zbl
,[12] Einige Sätze und Fragestellungen über Fourier-Koeffizienten, Math. Z., 34, N° 4 (1932), 477-480. | Zbl
,[13] Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets, Ann. Inst. Fourier, 31, n° 1 (1981), 157-175. | Numdam | MR | Zbl
, ,[14] Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970. | MR | Zbl
,[15] A strengthening of the Kolmogorov theorem on conjugate function and interpolation properties of uniformly convergent power series, Trudy Matem. Inst. im V. A. Steklova, 155 (1981), 7-40 (Russian). | MR | Zbl
,[16] Trigonometric series, vol. I, II, Cambridge at the University Press, 1959. | Zbl
,Cité par Sources :