On considère un polynôme , à coefficients réels non négatifs, à deux indéterminées. On montre que la connaissance des pôles des intégrales
donne des renseignements sur les racines du polynômes de Bernstein de . La détermination des pôles des intégrales peut se faire en utilisant certaines méthodes de Mellin. Des calculs explicites sont donnés.
Let be a polynomial with non negative real coefficients, in two indeterminates. One shows that the knowledge of the poles of the integrals
gives some of the roots of the Bernstein polynomial of . One can calculate poles of these integrals using some Mellin’s methods. Some explicit computations are given.
@article{AIF_1986__36_4_1_0, author = {Cassou-Nogu\`es, Pierrette}, title = {Racines de polyn\^omes de {Bernstein}}, journal = {Annales de l'Institut Fourier}, pages = {1--30}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {36}, number = {4}, year = {1986}, doi = {10.5802/aif.1067}, mrnumber = {88c:32012}, zbl = {0597.32004}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.1067/} }
TY - JOUR AU - Cassou-Noguès, Pierrette TI - Racines de polynômes de Bernstein JO - Annales de l'Institut Fourier PY - 1986 SP - 1 EP - 30 VL - 36 IS - 4 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.1067/ DO - 10.5802/aif.1067 LA - fr ID - AIF_1986__36_4_1_0 ER -
Cassou-Noguès, Pierrette. Racines de polynômes de Bernstein. Annales de l'Institut Fourier, Tome 36 (1986) no. 4, pp. 1-30. doi : 10.5802/aif.1067. http://www.numdam.org/articles/10.5802/aif.1067/
[1] On some problems in singularity theory, Geometry and Analysis, Papers dedicated to the memory of V. K. Patodi, Springer Verlag, 1981. | Zbl
,[2] Feasibility of the analytic continuation fλ+ for certain polynomials f translated from Funktsional'nyi Analiz i Ego Prilozheniya, vol. 2, n° 1, p. 92-93, January-March 1968. | MR | Zbl
,[3] Séries de Dirichlet et intégrales associées à un polynôme à deux indéterminées, Journal of Number Theory, Vol. 23, n° 1 (1986), 1-54. | MR | Zbl
,[4] B functions and holonomic systems, Rationality of roots of b functions, Invent. Math., (1976-1977), 33-53. | EuDML | Zbl
,[5] Le polynôme de Bernstein d'une singularité isolée, Lecture Notes in Math., vol. 459, Springer Verlag 1975, 98-119. | MR | Zbl
,[6] On the theory of b-functions, Publ. Res. Inst. Math. Sci., 14 (1978), 111-202. | MR | Zbl
,[7] b-functions and exponents of hypersurface isolated singularities, Proceedings of Symposia in Pure Mathematics, vol. 40 (1983), Part. 2. | MR | Zbl
,[8] Minimal characteristic exponent of the Gauss-Manin connection of isolated singular point and Newton polyhedron, Math. Ann., 259 (1982), 431-441. | EuDML | MR | Zbl
et ,Cité par Sources :