Pour chaque nombre premier , on décrit les valeurs propres d’un graphe -régulier ayant environ sommets construit à partir de la surface de Markoff. On montre qu’elles suivent approximativement la loi de Kesten–McKay, qui décrit également les valeurs propres d’un graphe aléatoire régulier. On utilise la méthode des moments et l’action de sur la surface de Markoff.
For each prime , we study the eigenvalues of a 3-regular graph on roughly vertices constructed from the Markoff surface. We show they asymptotically follow the Kesten–McKay law, which also describes the eigenvalues of a random regular graph. The proof is based on the method of moments and takes advantage of a natural group action on the Markoff surface.
Révisé le :
Accepté le :
Publié le :
Mots clés : Markoff surface, Kesten–McKay law, cubic surfaces, graphs and groups
@article{AHL_2021__4__227_0, author = {de Courcy-Ireland, Matthew and Magee, Michael}, title = {Kesten{\textendash}McKay law for the {Markoff} surface mod $p$}, journal = {Annales Henri Lebesgue}, pages = {227--250}, publisher = {\'ENS Rennes}, volume = {4}, year = {2021}, doi = {10.5802/ahl.71}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ahl.71/} }
TY - JOUR AU - de Courcy-Ireland, Matthew AU - Magee, Michael TI - Kesten–McKay law for the Markoff surface mod $p$ JO - Annales Henri Lebesgue PY - 2021 SP - 227 EP - 250 VL - 4 PB - ÉNS Rennes UR - http://www.numdam.org/articles/10.5802/ahl.71/ DO - 10.5802/ahl.71 LA - en ID - AHL_2021__4__227_0 ER -
de Courcy-Ireland, Matthew; Magee, Michael. Kesten–McKay law for the Markoff surface mod $p$. Annales Henri Lebesgue, Tome 4 (2021), pp. 227-250. doi : 10.5802/ahl.71. http://www.numdam.org/articles/10.5802/ahl.71/
[Aig13] Markov’s Theorem and 100 Years of the Uniqueness Conjecture: A Mathematical Journey from Irrational Numbers to Perfect Matchings, Springer, 2013 | Zbl
[Bar91] The Markoff equation and equations of Hurwitz, Ph. D. Thesis, Brown University, USA (1991) | MR
[BGS16] Markoff Surfaces and Strong Approximation: 1 (2016) (https://arxiv.org/abs/1607.01530)
[Car57] The number of points on certain cubic surfaces over a finite field, Boll. Unione Mat. Ital., Volume 12 (1957), pp. 19-21 | MR | Zbl
[CGMP20] The cycle structure of a Markoff automorphism over finite fields, J. Number Theory, Volume 211 (2020), pp. 1-27 | DOI | MR | Zbl
[CL09] Dynamics on character varieties and Malgrange irreducibility of Painlevé VI equation., Ann. Inst. Fourier, Volume 59 (2009) no. 7, pp. 2927-2978 | DOI | Numdam | Zbl
[ET48a] On a problem in the theory of uniform distribution. I, Proc. Akad. Wet. Amsterdam, Volume 51 (1948), pp. 1146-1154 | MR | Zbl
[ET48b] On a problem in the theory of uniform distribution. II, Proc. Akad. Wet. Amsterdam, Volume 51 (1948), pp. 1262-1269 | MR | Zbl
[FK65] Vorlesungen über die Theorie der automorphen Funktionen. Band 1: Die gruppentheoretischen Grundlagen. Band II: Die funktionentheoretischen Ausführungen und die Andwendungen, Bibliotheca Mathematica Teubneriana, Bände 3, 4, Johnson Reprint Corp.; Teubner, 1965
[Fri96] Über die Theorie der automorphen Modulgrupper, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., Volume 1896 (1896), pp. 91-101
[GJS99] Spectra of elements in the group ring of SU(2), J. Eur. Math. Soc., Volume 1 (1999) no. 1, pp. 51-85 | DOI | MR | Zbl
[Kes59] Symmetric random walks on groups, Trans. Am. Math. Soc., Volume 92 (1959), pp. 336-354 | DOI | MR | Zbl
[KMSV20] On the Structure of Graphs of Markoff Triples, Q. J. Math., Volume 71 (2020) no. 2, pp. 637-648 | DOI | MR | Zbl
[Mar80] Sur les formes quadratiques binaires indéfinies, Math. Ann., Volume 17 (1880) no. 3, pp. 379-399 | DOI | Zbl
[McK81] The expected eigenvalue distribution of a large regular graph, Linear Algebra Appl., Volume 40 (1981), pp. 203-216 | DOI | MR
[MKS04] Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Dover Publications, 2004 | Zbl
[Mon94] Ten lectures on the interface between analytic number theory and harmonic analysis, Regional Conference Series in Mathematics, 84, American Mathematical Society, 1994 | MR | Zbl
[MP18] The Markoff Group of Transformations in Prime and Composite Moduli, Duke Math. J., Volume 167 (2018) no. 14, pp. 2679-2720 | DOI | MR | Zbl
[Nie17] Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden, Math. Ann., Volume 78 (1917), pp. 385-397 | DOI | MR | Zbl
[Sel91] Collected Papers. Vol. II, Springer, 1991 (Lectures on sieves, p. 65–247) | Zbl
[Vaa85] Some extremal functions in Fourier analysis, Bull. Am. Math. Soc., Volume 12 (1985) no. 2, pp. 183-216 | DOI | MR | Zbl
[ÈH74] Cubic surfaces of Markov type, Math. USSR, Sb., Volume 22 (1974) no. 3, pp. 333-348 (translated by R. Lenet) | DOI | MR | Zbl
Cité par Sources :