Kesten–McKay law for the Markoff surface mod p
[Loi de Kesten–McKay pour la surface de Markoff modulo p]
Annales Henri Lebesgue, Tome 4 (2021), pp. 227-250.

Pour chaque nombre premier p, on décrit les valeurs propres d’un graphe 3-régulier ayant environ p 2 sommets construit à partir de la surface de Markoff. On montre qu’elles suivent approximativement la loi de Kesten–McKay, qui décrit également les valeurs propres d’un graphe aléatoire régulier. On utilise la méthode des moments et l’action de GL 2 () sur la surface de Markoff.

For each prime p, we study the eigenvalues of a 3-regular graph on roughly p 2 vertices constructed from the Markoff surface. We show they asymptotically follow the Kesten–McKay law, which also describes the eigenvalues of a random regular graph. The proof is based on the method of moments and takes advantage of a natural group action on the Markoff surface.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.71
Classification : 11D25, 05C50, 11F72, 37P25
Mots clés : Markoff surface, Kesten–McKay law, cubic surfaces, graphs and groups
de Courcy-Ireland, Matthew 1 ; Magee, Michael 2

1 Department of Mathematics, Princeton University, Princeton, NJ, 08544, (USA)
2 Department of Mathematical Sciences, Durham University, Durham, DH1 3LE, (UK)
@article{AHL_2021__4__227_0,
     author = {de Courcy-Ireland, Matthew and Magee, Michael},
     title = {Kesten{\textendash}McKay law for the {Markoff} surface mod $p$},
     journal = {Annales Henri Lebesgue},
     pages = {227--250},
     publisher = {\'ENS Rennes},
     volume = {4},
     year = {2021},
     doi = {10.5802/ahl.71},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ahl.71/}
}
TY  - JOUR
AU  - de Courcy-Ireland, Matthew
AU  - Magee, Michael
TI  - Kesten–McKay law for the Markoff surface mod $p$
JO  - Annales Henri Lebesgue
PY  - 2021
SP  - 227
EP  - 250
VL  - 4
PB  - ÉNS Rennes
UR  - http://www.numdam.org/articles/10.5802/ahl.71/
DO  - 10.5802/ahl.71
LA  - en
ID  - AHL_2021__4__227_0
ER  - 
%0 Journal Article
%A de Courcy-Ireland, Matthew
%A Magee, Michael
%T Kesten–McKay law for the Markoff surface mod $p$
%J Annales Henri Lebesgue
%D 2021
%P 227-250
%V 4
%I ÉNS Rennes
%U http://www.numdam.org/articles/10.5802/ahl.71/
%R 10.5802/ahl.71
%G en
%F AHL_2021__4__227_0
de Courcy-Ireland, Matthew; Magee, Michael. Kesten–McKay law for the Markoff surface mod $p$. Annales Henri Lebesgue, Tome 4 (2021), pp. 227-250. doi : 10.5802/ahl.71. http://www.numdam.org/articles/10.5802/ahl.71/

[Aig13] Aigner, Martin Markov’s Theorem and 100 Years of the Uniqueness Conjecture: A Mathematical Journey from Irrational Numbers to Perfect Matchings, Springer, 2013 | Zbl

[Bar91] Baragar, Arthur The Markoff equation and equations of Hurwitz, Ph. D. Thesis, Brown University, USA (1991) | MR

[BGS16] Bourgain, Jean; Gamburd, Alexander; Sarnak, Peter Markoff Surfaces and Strong Approximation: 1 (2016) (https://arxiv.org/abs/1607.01530)

[Car57] Carlitz, Leonard The number of points on certain cubic surfaces over a finite field, Boll. Unione Mat. Ital., Volume 12 (1957), pp. 19-21 | MR | Zbl

[CGMP20] Cerbu, Alois; Gunther, Elijah; Magee, Michael; Peilen, Luke The cycle structure of a Markoff automorphism over finite fields, J. Number Theory, Volume 211 (2020), pp. 1-27 | DOI | MR | Zbl

[CL09] Cantat, Serge; Loray, Frank Dynamics on character varieties and Malgrange irreducibility of Painlevé VI equation., Ann. Inst. Fourier, Volume 59 (2009) no. 7, pp. 2927-2978 | DOI | Numdam | Zbl

[ET48a] Erdős, Pál; Turán, Pál On a problem in the theory of uniform distribution. I, Proc. Akad. Wet. Amsterdam, Volume 51 (1948), pp. 1146-1154 | MR | Zbl

[ET48b] Erdős, Pál; Turán, Pál On a problem in the theory of uniform distribution. II, Proc. Akad. Wet. Amsterdam, Volume 51 (1948), pp. 1262-1269 | MR | Zbl

[FK65] Fricke, Robert; Klein, Felix Vorlesungen über die Theorie der automorphen Funktionen. Band 1: Die gruppentheoretischen Grundlagen. Band II: Die funktionentheoretischen Ausführungen und die Andwendungen, Bibliotheca Mathematica Teubneriana, Bände 3, 4, Johnson Reprint Corp.; Teubner, 1965

[Fri96] Fricke, Robert Über die Theorie der automorphen Modulgrupper, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., Volume 1896 (1896), pp. 91-101

[GJS99] Gamburd, Alexander; Jakobson, Dmitry; Sarnak, Peter Spectra of elements in the group ring of SU(2), J. Eur. Math. Soc., Volume 1 (1999) no. 1, pp. 51-85 | DOI | MR | Zbl

[Kes59] Kesten, Harry Symmetric random walks on groups, Trans. Am. Math. Soc., Volume 92 (1959), pp. 336-354 | DOI | MR | Zbl

[KMSV20] Konyagin, Sergeĭ V.; Makarychev, Sergey V.; Shparlinski, Igor E.; Vyugin, Ilya V. On the Structure of Graphs of Markoff Triples, Q. J. Math., Volume 71 (2020) no. 2, pp. 637-648 | DOI | MR | Zbl

[Mar80] Markoff, Andreĭ Sur les formes quadratiques binaires indéfinies, Math. Ann., Volume 17 (1880) no. 3, pp. 379-399 | DOI | Zbl

[McK81] McKay, Bredan D. The expected eigenvalue distribution of a large regular graph, Linear Algebra Appl., Volume 40 (1981), pp. 203-216 | DOI | MR

[MKS04] Magnus, Wilhelm; Karrass, Abraham; Solitar, Donald Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Dover Publications, 2004 | Zbl

[Mon94] Montgomery, Hugh L. Ten lectures on the interface between analytic number theory and harmonic analysis, Regional Conference Series in Mathematics, 84, American Mathematical Society, 1994 | MR | Zbl

[MP18] Meiri, Chen; Puder, Doron and The Markoff Group of Transformations in Prime and Composite Moduli, Duke Math. J., Volume 167 (2018) no. 14, pp. 2679-2720 | DOI | MR | Zbl

[Nie17] Nielsen, Jakob Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden, Math. Ann., Volume 78 (1917), pp. 385-397 | DOI | MR | Zbl

[Sel91] Selberg, Atle Collected Papers. Vol. II, Springer, 1991 (Lectures on sieves, p. 65–247) | Zbl

[Vaa85] Vaaler, Jeffrey D. Some extremal functions in Fourier analysis, Bull. Am. Math. Soc., Volume 12 (1985) no. 2, pp. 183-216 | DOI | MR | Zbl

[ÈH74] Èl’-Huti, M. H. Cubic surfaces of Markov type, Math. USSR, Sb., Volume 22 (1974) no. 3, pp. 333-348 (translated by R. Lenet) | DOI | MR | Zbl

Cité par Sources :