On démontre que les champs cotangents décalés sont canoniquement munis d’une structure symplectique décalée. On démontre également que les champs conormaux décalés sont munis d’une structure Lagrangienne canonique. Ces résultats étaient attendus mais aucune démonstration n’était disponible dans le cas des champs d’Artin.
We prove that shifted cotangent stacks carry a canonical shifted symplectic structure. We also prove that shifted conormal stacks carry a canonical Lagrangian structure. These results were believed to be true, but no written proof was available in the Artin case.
Accepté le :
Publié le :
DOI : 10.5802/afst.1593
@article{AFST_2019_6_28_1_67_0, author = {Calaque, Damien}, title = {Shifted cotangent stacks are shifted symplectic}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {67--90}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 28}, number = {1}, year = {2019}, doi = {10.5802/afst.1593}, mrnumber = {3940792}, zbl = {1444.14004}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1593/} }
TY - JOUR AU - Calaque, Damien TI - Shifted cotangent stacks are shifted symplectic JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2019 SP - 67 EP - 90 VL - 28 IS - 1 PB - Université Paul Sabatier, Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1593/ DO - 10.5802/afst.1593 LA - en ID - AFST_2019_6_28_1_67_0 ER -
%0 Journal Article %A Calaque, Damien %T Shifted cotangent stacks are shifted symplectic %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2019 %P 67-90 %V 28 %N 1 %I Université Paul Sabatier, Toulouse %U http://www.numdam.org/articles/10.5802/afst.1593/ %R 10.5802/afst.1593 %G en %F AFST_2019_6_28_1_67_0
Calaque, Damien. Shifted cotangent stacks are shifted symplectic. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 28 (2019) no. 1, pp. 67-90. doi : 10.5802/afst.1593. http://www.numdam.org/articles/10.5802/afst.1593/
[1] Three lectures on derived symplectic geometry and topological field theories, Poisson 2012: Poisson Geometry in Mathematics and Physics (Indagationes Mathematicæ), Volume 25, Elsevier, 2014, pp. 926-947 | MR | Zbl
[2] Lagrangian structures on mapping stacks and semi-classical TFTs, Stacks and Categories in Geometry, Topology, and Algebra (Pantev, Tony, ed.) (Contemporary Mathematics), Volume 643, American Mathematical Society, 2015 | DOI | MR | Zbl
[3] Shifted Poisson Structures and Deformation Quantization, J. Topol., Volume 10 (2017) no. 2, pp. 483-584 | DOI | MR | Zbl
[4] A study in derived algebraic geometry. Vol. II. Deformations, Lie theory and formal geometry, Mathematical Surveys and Monographs, 221, American Mathematical Society, Providence, RI, 2017 no. 2 | MR | Zbl
[5] Iterated spans and classical topological field theories, Math. Z., Volume 289 (2018) no. 3-4, pp. 1427-1488 | DOI | MR | Zbl
[6] Derived coisotropic structures II: stacks and quantization, Selecta Math. (N.S.), Volume 24 (2018) no. 4, pp. 3119-3173 | DOI | MR | Zbl
[7] Shifted Symplectic Structures, Publications mathématiques de l’IHÉS, Volume 117 (2013) no. 1, pp. 271-328 | DOI | MR | Zbl
[8] Shifted Poisson and symplectic structures on derived -stacks, J. Topol., Volume 10 (2017) no. 1, pp. 178-210 | DOI | MR | Zbl
[9] Quasi-Hamiltonian reduction via classical Chern–Simons theory, Adv. Math., Volume 287 (2016), pp. 733-773 | DOI | MR | Zbl
[10] Champs affines, Sel. Math., New Ser., Volume 12 (2006) no. 1, pp. 39-135 | DOI | MR | Zbl
[11] Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. Amer. Math. Soc., Volume 193 (2008) no. 902, 224 pages | MR | Zbl
Cité par Sources :