Le mathématicien Youri Egorov est décédé le 6 octobre 2018 à Toulouse. Ce texte expose deux aspects fondamentaux de son travail, la quantification des transformations canoniques et l’étude des opérateurs sous-elliptiques.
The mathematician Yuri Egorov died on October 6, 2018 in Toulouse. This text outlines two fundamental aspects of his work, the quantification of canonical transformations and the study of subelliptic operators.
Accepté le :
Publié le :
DOI : 10.5802/afst.1591
@article{AFST_2019_6_28_1_1_0, author = {Lerner, Nicolas}, title = {Sur deux contributions de {Y.~V.~Egorov} (1938{\textendash}2018)}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1--9}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {6e s{\'e}rie, 28}, number = {1}, year = {2019}, doi = {10.5802/afst.1591}, mrnumber = {3940790}, zbl = {07052701}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/afst.1591/} }
TY - JOUR AU - Lerner, Nicolas TI - Sur deux contributions de Y. V. Egorov (1938–2018) JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2019 SP - 1 EP - 9 VL - 28 IS - 1 PB - Université Paul Sabatier, Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1591/ DO - 10.5802/afst.1591 LA - fr ID - AFST_2019_6_28_1_1_0 ER -
%0 Journal Article %A Lerner, Nicolas %T Sur deux contributions de Y. V. Egorov (1938–2018) %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2019 %P 1-9 %V 28 %N 1 %I Université Paul Sabatier, Toulouse %U http://www.numdam.org/articles/10.5802/afst.1591/ %R 10.5802/afst.1591 %G fr %F AFST_2019_6_28_1_1_0
Lerner, Nicolas. Sur deux contributions de Y. V. Egorov (1938–2018). Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 28 (2019) no. 1, pp. 1-9. doi : 10.5802/afst.1591. http://www.numdam.org/articles/10.5802/afst.1591/
[1] Evolution equations and generalized Fourier integral operators, Advances in phase space analysis of partial differential equations (Progress in Nonlinear Differential Equations and their Applications), Volume 78, Birkhäuser, 2009, pp. 59-72 | DOI | MR | Zbl
[2] Fourier integral operators. II, Acta Math., Volume 128 (1972) no. 3-4, pp. 183-269 | DOI | MR | Zbl
[3] Subelliptic pseudodifferential operators, Dokl. Akad. Nauk SSSR, Volume 188 (1969), pp. 20-22 | MR | Zbl
[4] Subelliptic operators, Usp. Mat. Nauk, Volume 30 (1975) no. 3, pp. 57-104 | MR | Zbl
[5] The uncertainty principle and sharp Gȧrding inequalities, Commun. Pure Appl. Math., Volume 34 (1981) no. 3, pp. 285-331 | DOI | Zbl
[6] Microlocal analysis for differential operators. An introduction, London Mathematical Society Lecture Note Series, 196, Cambridge University Press, 1994, iv+151 pages | DOI | MR | Zbl
[7] Fourier integral operators. I, Acta Math., Volume 127 (1971) no. 1-2, pp. 79-183 | DOI | MR
[8] Subelliptic operators, Seminar on Singularities of Solutions of Linear Partial Differential Equations (Inst. Adv. Study, Princeton, N.J., 1977/78) (Annals of Mathematics Studies), Volume 91, Princeton University Press, 1979, pp. 127-208 | MR | Zbl
[9] The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Classics in Mathematics, Springer, 2003, x+440 pages | DOI | MR | Zbl
[10] The analysis of linear partial differential operators. IV. Fourier integral operators, Classics in Mathematics, Springer, 2009, viii+352 pages | DOI | MR | Zbl
[11] Metrics on the phase space and non-selfadjoint pseudo-differential operators, Pseudo-Differential Operators. Theory and Applications, 3, Birkhäuser, 2010, xii+397 pages | DOI | MR | Zbl
[12] Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics, 3, Oxford University Press, 1967, vii+106 pages | MR | Zbl
[13] On local solvability of linear partial differential equations. I. Necessary conditions, Commun. Pure Appl. Math., Volume 23 (1970), pp. 1-38 | DOI | MR | Zbl
[14] Autour de l’approximation semi-classique, Progress in Mathematics, 68, Birkhäuser, 1987, x+329 pages | MR | Zbl
[15] A new method of proof of the subelliptic estimates, Commun. Pure Appl. Math., Volume 24 (1971), pp. 71-115 | DOI | MR | Zbl
[16] Introduction to pseudodifferential and Fourier integral operators. Vol. 2 Fourier integral operators, The University Series in Mathematics, Plenum Press, 1980, xiv+301–649+xi pages | MR | Zbl
[17] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012, xii+431 pages | DOI | MR | Zbl
Cité par Sources :