A viscosity approach to degenerate complex Monge-Ampère equations
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 22 (2013) no. 4, pp. 843-913.

Ce qui suit reproduit les exposés de l’auteur à l’Ecole d’Hiver KAWA 3, qui s’est tenue à l’Université de Barcelone du 30 janvier au 3 février 2012. Le but principal était d’expliquer les techniques de viscosité et de les appliquer aux équations de Monge-Ampère complexes dégénérées.

Nous survolerons les techniques principales de l’approche par la viscosité, et montrerons comment les adapter aux équations de Monge-Ampère complexes dégénérées. Dans cette méthode, le point crucial est le « Principe de Comparaison » qui nous permet de prouver l’unicité des solutions sous des conditions de valeurs au bord.

Nous démontrerons un principe de comparaison de viscosité global pour les équations de Monge-Ampère complexes dégénérées sur les variétés compactes kählériennes et montrerons comment combiner les méthodes de viscosité et les méthodes de pluripotentiel pour obtenir des « versions continues » des Théorèmes de Calabi-Yau et Aubin-Yau dans certaines situations dégénérées. En particulier, nous démontrons l’existence de métriques de Kähler-Einstein singulières avec des potentiels continus sur les variétés de Kähler compactes normales avec des singularités modérées et un diviseur canonique ample ou trivial.

This is the content of the lectures given by the author at the winter school KAWA3 held at the University of Barcelona in 2012 from January 30 to February 3. The main goal was to give an account of viscosity techniques and to apply them to degenerate Complex Monge-Ampère equations.

We will survey the main techniques used in the viscosity approach and show how to adapt them to degenerate complex Monge-Ampère equations. The heart of the matter in this approach is the “Comparison Principle" which allows us to prove uniqueness of solutions with prescribed boundary conditions.

We will prove a global viscosity comparison principle for degenerate complex Monge-Ampère equations on compact Kähler manifolds and show how to combine Viscosity methods and Pluripotential methods to get “continuous versions" of the Calabi-Yau and Aubin-Yau Theorems in some degenerate situations. In particular we prove the existence of singular Kähler-Einstein metrics with continuous potentials on compact normal Kähler varieties with mild singularities and ample or trivial canonical divisor.

@article{AFST_2013_6_22_4_843_0,
     author = {Zeriahi, Ahmed},
     title = {A viscosity approach to degenerate complex {Monge-Amp\`ere} equations},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {843--913},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 22},
     number = {4},
     year = {2013},
     doi = {10.5802/afst.1390},
     zbl = {06250449},
     mrnumber = {3137252},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/afst.1390/}
}
TY  - JOUR
AU  - Zeriahi, Ahmed
TI  - A viscosity approach to degenerate complex Monge-Ampère equations
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2013
SP  - 843
EP  - 913
VL  - 22
IS  - 4
PB  - Université Paul Sabatier, Institut de mathématiques
PP  - Toulouse
UR  - http://www.numdam.org/articles/10.5802/afst.1390/
DO  - 10.5802/afst.1390
LA  - en
ID  - AFST_2013_6_22_4_843_0
ER  - 
%0 Journal Article
%A Zeriahi, Ahmed
%T A viscosity approach to degenerate complex Monge-Ampère equations
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2013
%P 843-913
%V 22
%N 4
%I Université Paul Sabatier, Institut de mathématiques
%C Toulouse
%U http://www.numdam.org/articles/10.5802/afst.1390/
%R 10.5802/afst.1390
%G en
%F AFST_2013_6_22_4_843_0
Zeriahi, Ahmed. A viscosity approach to degenerate complex Monge-Ampère equations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 22 (2013) no. 4, pp. 843-913. doi : 10.5802/afst.1390. http://www.numdam.org/articles/10.5802/afst.1390/

[1] Alexandrov (A.D.).— Almost everywhere existence of the second order differential of a convex function and some properties of convex functions, Leningrad. Univ. Ann. (Math. Ser.) 37, p. 3-35 (1939). (Russian)

[2] Aubin (T.).— Equation de type Monge-Ampère sur les variétés kählériennes compactes. Bull. Sci. Math. 102, p. 63-95 (1978). | MR | Zbl

[3] Azagra (D.), Ferrara (D.), Sanz (B.).— Viscosity Solutions to second order partial differential equations on Riemannian manifolds J. Diff. Equations (2008). | Zbl

[4] Barles (G.).— Solutions de Viscosité et Équations Elliptiques du Deuxième ordre, Notes de cours, Université de Tours, Septembre 97.

[5] Bedford (E.).— Survey of pluri-potential theory. Several complex variables (Mittag-Leffler, Stockholm, 1987/1988), 4897, Math. Notes, 38, Princeton Univ. Press, Princeton, NJ, (1993). | MR | Zbl

[6] Berman (R.).— Bergman kernels and equilibrium measures for line bundles over projective manifolds, Amer. J. Math. 131, no. 5, p. 1485-1524 (2009). | MR | Zbl

[7] Blocki (Z.).— Uniqueness and stability for the complex Monge-Ampère equation on compact Khler manifolds, Indiana Univ. Math. J. 52, no. 6, p. 1697-1701 (2003). | MR | Zbl

[8] Blocki (Z.).— On the definition of the Monge-Ampère operator in 2 , Math. Ann. 328, no. 3, p. 415-423 (2004). | MR | Zbl

[9] Blocki (Z.).— The domain of definition of the complex Monge-Ampère operator, Amer. J. Math. 128, no. 2, p. 519-530 (2006). | MR | Zbl

[10] Blocki (Z.).— The Calabi-Yau theorem. Complex Monge-Ampère equations and geodesics in the space of Kähler metrics, Lecture Notes in Math., 2038, Springer, Heidelberg (2012). | MR | Zbl

[11] Berman (R.), Demailly (J.-P.).— Regularity of plurisubharmonic upper envelopes in big cohomology classes, Perspectives in analysis, geometry, and topology, p. 39-66, Progr. Math., 296, Birkhuser/Springer, New York (2012). | MR | Zbl

[12] Bedford (E.), Taylor (B.A.).— The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37, no. 1, p. 1-44 (1976). | MR | Zbl

[13] Bedford (E.), Taylor (B.A.).— A new capacity for plurisubharmonic functions. Acta Math. 149, p. 1-40 (1982). | MR | Zbl

[14] Bedford (E.), Taylor (B.A.).— Fine topology, Šilov boundary, and (dd c ) n , J. Funct. Anal. 72, no. 2, p. 225-251 (1987). | MR | Zbl

[15] Bedford (E.), Taylor (B.A.).— Plurisubharmonic functions with logarithmic singularities, Ann. Inst. Fourier (Grenoble) 38, no. 4, p. 133-171 (1988). | Numdam | MR | Zbl

[16] Bedford (E.), Taylor (B.A.).— Uniqueness for the complex Monge-Ampère equation for functions of logarithmic growth, Indiana Univ. Math. J. 38, no. 2, p. 455-469 (1989). | MR | Zbl

[17] Benelkourchi (S.), Guedj (V.), Zeriahi (A.).— A priori estimates for weak solutions of complex Monge-Ampère equations, Ann. Scuola Norm. Sup. Pisa C1. Sci. (5), Vol VII, p. 1-16 (2008). | Numdam | Zbl

[18] Benelkourchi (S.), Guedj (V.), Zeriahi (A.).— Plurisubharmonic functions with weak singularities. Complex Analysis and Digital Geometry, Proceedings from the Kiselmanfest 2006, Acta Universitatis Upsaliensis, Vol. 88 (2009). | MR | Zbl

[19] Berman (R.), Boucksom (S.), Guedj (V.), Zeriahi (A.).— A variational approach to complex Monge Ampère equations. Publ. Math. I.H.E.S. 117, p. 179-245. (2013) | MR

[20] Birkar (C.), Cascini (P.), Hacon (C.D.), McKernan (J.).— Existence of minimal models for varieties of log general type. J. Amer. Math. Soc. 23, no. 2, p. 405-468 (2010). | MR | Zbl

[21] Boucksom (S.), Eyssidieux (P.), Guedj (V.), Zeriahi (A.).— Monge Ampère equations in big cohomology classes, Acta Mathematica 205, p. 199-262 (2010). | MR | Zbl

[22] Berman (R.), Boucksom (S.), Guedj (V.), Zeriahi (A.).— Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties. Preprint, arXiv:1111.7158, p. 1-50.

[23] Calabi (E.).— On Kähler manifolds with vanishing canonical class. Algebraic geometry and topology. A symposium in honor of S. Lefschetz, p. 78-89. Princeton University Press, Princeton, N. J. (1957). | MR | Zbl

[24] Cardaliaguet (P.).— Solutions de viscosité d’équations elliptiques et paraboloiques non linéaires, Notes de Cours, Université de Rennes, Janvier 2004.

[25] Cascini (P.), La Nave (G.).— Kähler-Ricci Flow and the Minimal Model Program for Projective Varieties. Preprint arXiv math.AG/0603064.

[26] Cegrell (U.).— On the Dirichlet problem for the complex Monge-Ampère operator, Math. Z. 185, no. 2, p. 247-251 (1984). | MR | Zbl

[27] Cegrell (U.).— Pluricomplex energy. Acta Math. 180, no. 2, p. 187-217 (1998). | MR | Zbl

[28] Cegrell (U.).— The general definition of the complex Monge-Ampère operator Ann. Inst. Fourier 54, p. 159-179 (2004). | Numdam | MR | Zbl

[29] Chinh Lu (H.).— Viscosity solutions to complex Hessian equations. Preprint arXiv:1209.5343 | MR

[30] Caffarelli (L.A.), Cabré (X.).— Fully Nonlinear Elliptic Equations. American Mathematical Society Colloqium publications, Vol. 43 (1995). | MR | Zbl

[31] Caffarelli (L.A.), Kohn (J.-J.), Nirenberg (L.), Spruck (J.).— The Dirichlet problem for nonlinear second-order elliptic equations, II, Complex Monge-Amère and uniformly elliptic equations, Comm. Pure Appl. Math. 38, no. 2, p. 209-252 (1985). | MR | Zbl

[32] Crandall (M.), Lions (P.L.).— Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277, p. 1-42 (1983). | MR | Zbl

[33] Crandall (M.), Ishii (H.), Lions (P.L.).— User’s guide to viscosity solutions of second order partial differential equations Bull. Amer. Math. Soc. 27, p. 1-67 (1992). | MR | Zbl

[34] Demailly (J.P.).— Complex analytic and algebraic geometry. Book available at http://www-fourier.ujf-grenoble.fr/~demailly/books.html

[35] Demailly (J.P.).— Potential theory in several complex variables, Manuscript available at http://www-fourier.ujf-grenoble.fr/~demailly/.

[36] Demailly (J.P.).— Regularization of closed positive currents and intersection theory. J. Algebraic Geom. 1, no. 3, p. 361-409 (1992). | MR | Zbl

[37] Demailly (J.P.), Dinew (S.), Guedj (V.), Hiep Pham (H.), Kolodziej (S.), Zeriahi (A.).— Hölder continuous solutions to Monge-Ampère equations. arXiv.— 1112.1388 (to appear in JEMS 2012)

[38] Demailly (J.P.), Pali (N.).— Degenerate complex Monge-Ampère equations over compact Kähler manifolds Int. J. Math. 21, no.3, p. 357-405 (2010). | MR | Zbl

[39] Droniou (J.), Imbert (C.).— Solutions et solutions variationnelles pour EDP non lineaire, Cours polycopié, Université de Montpellier (2004).

[40] Eyssidieux (P.), Guedj (V.), Zeriahi (A.).— A priori L -estimate for degenerate complex Monge-Ampère equations. International Mathematical Research Notes, Vol. 2008, Article ID rnn070, 8 pages. | Zbl

[41] Eyssidieux (P.), Guedj (V.), Zeriahi (A.).— Singular Kähler-Einstein metrics J. Amer. Math. Soc. 22, p. 607-639 (2009). | MR | Zbl

[42] Eyssidieux (P.), Guedj (V.), Zeriahi (A.).— Viscosity solutions to Degenerate Complex Monge-Ampère Equations, Comm. Pure Appl. Math. 64, no. 8, p. 1059-1094 (2011). | MR | Zbl

[43] Gaveau (B.).— Méthodes de contrôle optimal en analyse complexe. I. Résolution d’équations de Monge-Ampère, J. Funct. Anal. 25, p. 391-411 (1977). | MR | Zbl

[44] Gilbarg (D.), Trudinger (N.S.).— Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag (1983). | MR | Zbl

[45] Guedj (V.), Zeriahi (A.).— Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15, no. 4, p. 607-639 (2005). | MR | Zbl

[46] Guedj (V.), Zeriahi (A.).— The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. An. 250, p. 442-482 (2007). | MR | Zbl

[47] Guedj (V.), Zeriahi (A.).— A. Stability of solutions to complex Monge-Ampère equations in big cohomology classes. Math. Res. Lett. 19, no. 05, p. 1025-1042 (2012). | MR | Zbl

[48] Harvey (F.R.), Lawson (H.B.).— Dirichlet duality and the nonlinear Dirichlet problem, Comm. Pure Appl. Math. 62, no. 3, p. 396-443 (2009). | MR | Zbl

[49] Harvey (F.R.), Lawson (H.B.).— Dirichlet duality and the nonlinear Dirichlet problem on Riemannian manifolds, J. Differential Geometry 88, no. 3, p. 395-482 (2011). | MR | Zbl

[50] Harvey (F.R.), Lawson (H.B.).— Potential Theory on almost complex manifolds, Preprint 2013, arXiv:1107.2584 (to appear in Ann. Inst. Fourier).

[51] Hörmander (L.).— Notions of convexity, Progress in Math., Birkhäuser (1994). | MR | Zbl

[52] Ishii (H.).— On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs, Comm. Pure Appl. Math. 42, no. 1, p. 15-45 (1989). | MR | Zbl

[53] Ishii (H.), Lions (P.L.).— Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, Journ. Diff. Equations 83, p. 26-78 (1990). | MR | Zbl

[54] Jensen (R.).— The maximum principle for viscosity solutions of fully nonlinear second-order partial differential equations, Arch. Rat. Mech. Anal. 101, p. 1-27 (1988). | MR | Zbl

[55] Kiselman (C.O.).— Plurisubharmonic functions and potential theory in several complex variables, Development of mathematics 1950-2000, 655-714, Birkhäuser, Basel (2000). | MR | Zbl

[56] Klimek (M.).— Pluripotential theory, London Mathematical Society Monographs. New Series, 6. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1991. | MR | Zbl

[57] Kołodziej (S.).— The range of the complex Monge-Ampere operator II. Indiana Univ. Math. J. 44 No. 3, p. 765-782 (1995). | MR | Zbl

[58] Kołodziej (S.).— The complex Monge-Ampère equation. Acta Math. 180, no. 1, p. 69-117 (1998). | MR | Zbl

[59] Kołodziej (S.).— The complex Monge-Ampère equation and pluripotential theory, Mem. Amer. Math. Soc. 178, no. 840 (2005). | Zbl

[60] Kołodziej (S.).— The Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52, no. 3, p. 667-686 (2003). | MR | Zbl

[61] Kołodziej (S.).— Hölder continuity of solutions to the complex Monge-Ampère equation with the right-hand side in L p : the case of compact Kähler manifolds, Math. Ann. 342, no. 2, p. 379-386 (2008). | MR | Zbl

[62] Kołodziej (S.), Tian (G.).— A uniform L -estimate for complex Monge-Ampère equations, Math. Ann. 342, no. 4, p. 773-787 (2008). | MR | Zbl

[63] Lelong (P.).— Fonctions plurisousharmoniques et formes diffrentielles positives, (French) Gordon and Breach, Paris-London-New York (Distributed by Dunod éditeur, Paris) 1968 ix+79 p. | MR | Zbl

[64] Phong (D. H.), Sturm (J.).— The Dirichlet problem for degenerate complex Monge-Ampere equations, Comm. Anal. Geom. 18, no. 1, p. 145-170 (2010). | MR | Zbl

[65] Phong (D. H.), Song (J.), Sturm (J.).— Complex Monge Ampere Equations, Surveys in Differential Geomety, vol. 17, p. 327-411 (2012).

[66] Tian (G.).— Canonical metrics in Kähler geometry, Lectures in Mathematics, ETH Zürich, Birkhäuser Verlag, Basel, 2000. vi+101 p. ISBN:3-7643-6194-8. | MR | Zbl

[67] Walsh (J.B.).— Continuity of envelopes of plurisubharmonic functions, J. Math. Mech. 18, p. 143-148 (1968). | MR | Zbl

[68] Wang (Y.).— A Viscosity Approach to the Dirichlet Problem for Complex Monge-Ampère Equations. Preprint, arXiv:1010.1292. | MR | Zbl

[69] Wiklund (J.).— Matrix inequalities and the complex Monge-Ampère operator, Ann. Polon. Math. 83, p. 211-220 (2004). | MR | Zbl

[70] Yau (S.T.).— On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, Comm. Pure Appl. Math. 31, p. 339-441 (1978). | MR | Zbl

[71] Zhang (Z.).— On On degenerate complex Monge-Ampère equations over closed Kähler manifolds. Int. Math. Res. Not. (2006), Art. ID 63640, 18p. | MR | Zbl

Cité par Sources :