On présente ici les notes d’un mini-cours donné lors d’une école d’hiver à Marseille en 2011. Le but du cours était de fournir une introduction à des travaux récents sur la géométrie de l’espace des métriques kählériennes associées à un fibré en droites ample. Le cours a mis l’accent sur le rôle de la convexité, en tant qu’exemple motivant et en tant qu’outil.
These are the lecture notes of a minicourse given at a winter school in Marseille 2011. The aim of the course was to give an introduction to recent work on the geometry of the space of Kähler metrics associated to an ample line bundle. The emphasis of the course was the role of convexity, both as a motivating example and as a tool.
@article{AFST_2013_6_22_4_713_0, author = {Berndtsson, Bo}, title = {Convexity on the space of {K\"ahler} metrics}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {713--746}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 22}, number = {4}, year = {2013}, doi = {10.5802/afst.1387}, zbl = {06250446}, mrnumber = {3137249}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1387/} }
TY - JOUR AU - Berndtsson, Bo TI - Convexity on the space of Kähler metrics JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2013 SP - 713 EP - 746 VL - 22 IS - 4 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1387/ DO - 10.5802/afst.1387 LA - en ID - AFST_2013_6_22_4_713_0 ER -
%0 Journal Article %A Berndtsson, Bo %T Convexity on the space of Kähler metrics %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2013 %P 713-746 %V 22 %N 4 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://www.numdam.org/articles/10.5802/afst.1387/ %R 10.5802/afst.1387 %G en %F AFST_2013_6_22_4_713_0
Berndtsson, Bo. Convexity on the space of Kähler metrics. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 22 (2013) no. 4, pp. 713-746. doi : 10.5802/afst.1387. http://www.numdam.org/articles/10.5802/afst.1387/
[1] Bando (Sh.), Mabuchi (T.).— Uniqueness of Einstein Kähler metrics modulo connected group actions. Algebraic geometry, Sendai, 1985, 11-40, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, (1987). | MR | Zbl
[2] Berman (R.), Berndtsson (B.) and Sjöstrand (J.).— Asymptotics of Bergman kernels Ark. Mat. 46, no. 2, p. 197-217 (2008). | MR | Zbl
[3] Berman (R.).— Analytic torsion, vortices and positive Ricci curvaturearXiv:1006.2988
[4] Berndtsson (B.).— A Brunn-Minkowski type inequality for Fano manifolds and the Bando-Mabuchi uniqueness theorem arXiv:1103.0923
[5] Berndtsson (B.).— Positivity of direct image bundles and convexity on the space of Kähler metrics, J. Differential geom. 81.3, p. 457-482 (2009). | MR | Zbl
[6] Berndtsson (B.).— Strict and non strict positivity of direct image bundles Math. Z. 269, no. 3-4, p. 1201-1218 (2011). | MR | Zbl
[7] Berndtsson (B.).— Positivity of direct image bundles and convexity on the space of Kähler metrics, J. Differential Geom. 81, p. 457-482 (2009). | MR | Zbl
[8] Brascamp (H. J.) and Lieb (E. H.).— On extensions of the Brunn-Minkowski and Prèkopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis 22, no. 4, p. 366-389 (1976). | MR | Zbl
[9] Chen (X. X.).— The space of Käler metrics, J. Differential Geom. 56, no. 2, p. 189-234 (2000). | MR | Zbl
[10] Ding (W.) and Tian (G.).— The generalized Moser-Trudinger Inequality. Proceedings of Nankai International Conference on Nonlinear Analysis (1993). | Zbl
[11] Donaldson (S. K.).— Scalar curvature and projective embeddings. I. J. Differential Geom. 59, no. 3, p. 479-522 (2001). | MR | Zbl
[12] Donaldson (S. K.).— Scalar curvature and projective embeddings. II. Q. J. Math. 56, no. 3, p. 345-356 (2005). | MR | Zbl
[13] Donaldson (S. K.).— Symmetric spaces, Kähler geometry and Hamiltonian dynamics. Northern California Symplectic Geometry Seminar, p. 13-33. | Zbl
[14] Chen (X.X.), Donaldson (S.K.), and Sun (S.).— Kähler-Einstein metrics and stability. arXiv:1210.7494
[15] Kobayashi (S.).— Differential geometry of complex vector bundles. Princeton University Press, Princeton, NJ; Iwanami Shoten, Tokyo, 1987. xii+305 pp. ISBN: 0-691-08467-X | MR | Zbl
[16] Lempert (L.) and Vivas (L.).— Geodesics in the space of Kähler metrics. arXiv:1105.2188 Duke Math. Journal, to appear. | Zbl
[17] Lu (Z.).— On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch. Amer. J. Math. 122, no. 2, p. 235-273 (2000). | MR | Zbl
[18] Mabuchi (T.).— Some symplectic geometry on compact Kähler manifolds. Osaka J. Math. 24, p. 227-252 (1987). | MR | Zbl
[19] Mabuchi (T.).— -energy maps integrating Futaki invariants. Tohoku Math. J. (2) 38, no. 4, p. 575-593 (1986). | MR | Zbl
[20] Phong (D.H.), Sturm (J.).— The Monge-Ampère operator and geodesics in the space of Kähler potentials, Inventiones Math. 166, p. 125-149 (2006). | MR | Zbl
[21] Phong (D.H.), Song (J.), Sturm (J.), Weinkove (B.).— The Moser-Trudinger inequality on Kahler-Einstein manifolds. Amer. J. Math. 130, no. 4, p. 1067-1085 (2008). | MR | Zbl
[22] Prekopa (A.).— On logarithmic concave measures and functions. Acad. Sci. Math. (Szeged) 34, p. 335-343 (1973). | MR | Zbl
[23] Ruan (W.-D.).— Canonical coordinates and Bergman metrics. Comm. Anal. Geom. 6, p. 589-631 (1998). | MR | Zbl
[24] Semmes (S.).— Complex Monge-Ampère and symplectic manifolds. Amer. J. Math. 114, no. 3, p. 495-550 (1992). | MR | Zbl
[25] Tian (G.).— On a set of polarized metrics on Kähler manifolds. J. Differential Geom. 32 (1990). | MR
[26] Tian (G.).— K-stability and Kähler-Einstein metrics. arXiv:1211.4669
[27] Zelditch (S.).— Szegö kernels and a theorem of Tian. Internat. Math. Res. Notices, no. 6, p. 317-331 (1998). | MR | Zbl
Cité par Sources :