Nous montrons, grâce à une approche variationnelle directe, que le deuxième problème avec valeurs au bord pour l’équation de Monge-Ampère dans avec non-linéarité exponentielle, et ensemble cible un corps convexe , admet une solution si et seulement si est le barycentre de . En combinant ce résultat avec de la géométrie torique, on obtient en particulier confirmation de la conjecture de Yau-Tian-Donaldson (généralisée) pour les variétés toriques log-Fano ; à savoir que admet une une métrique de Kähler-Einstein (singulière) si et seulement si elle est K-stable au sens algébro-géométrique. Nous obtenons donc une nouvelle démonstration, qui s’étend au cas log-Fano, du résultat fondateur de Wang-Zhou qui concerne le cas où est lisse et est trivial. Nous généralisons également la formule torique de Li pour la borne inférieure de la courbure de Ricci. Plus généralement, nous obtenons des solitons de Kähler-Ricci sur toute variété (singulière) log-Fano, et montrons qu’ils apparaissent comme la limite en temps grand du flot de Kähler-Ricci. De plus, en utilisant la dualité, nous confirmons aussi une conjecture de Donaldson sur les solutions du problème de valeurs au bord d’Abreu sur le corps convexe dans le cas d’une mesure canonique donnée sur la frontière de .
We show, using a direct variational approach, that the second boundary value problem for the Monge-Ampère equation in with exponential non-linearity and target a convex body is solvable iff is the barycenter of Combined with some toric geometry this confirms, in particular, the (generalized) Yau-Tian-Donaldson conjecture for toric log Fano varieties saying that admits a (singular) Kähler-Einstein metric iff it is K-stable in the algebro-geometric sense. We thus obtain a new proof and extend to the log Fano setting the seminal result of Wang-Zhou concerning the case when is smooth and is trivial. Li’s toric formula for the greatest lower bound on the Ricci curvature is also generalized. More generally, we obtain Kähler-Ricci solitons on any log Fano variety and show that they appear as the large time limit of the Kähler-Ricci flow. Furthermore, using duality, we also confirm a conjecture of Donaldson concerning solutions to Abreu’s boundary value problem on the convex body in the case of a given canonical measure on the boundary of
@article{AFST_2013_6_22_4_649_0, author = {Berman, Robert J. and Berndtsson, Bo}, title = {Real {Monge-Amp\`ere} equations and {K\"ahler-Ricci} solitons on toric log {Fano} varieties}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {649--711}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 22}, number = {4}, year = {2013}, doi = {10.5802/afst.1386}, zbl = {1283.58013}, mrnumber = {3137248}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1386/} }
TY - JOUR AU - Berman, Robert J. AU - Berndtsson, Bo TI - Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2013 SP - 649 EP - 711 VL - 22 IS - 4 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1386/ DO - 10.5802/afst.1386 LA - en ID - AFST_2013_6_22_4_649_0 ER -
%0 Journal Article %A Berman, Robert J. %A Berndtsson, Bo %T Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2013 %P 649-711 %V 22 %N 4 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://www.numdam.org/articles/10.5802/afst.1386/ %R 10.5802/afst.1386 %G en %F AFST_2013_6_22_4_649_0
Berman, Robert J.; Berndtsson, Bo. Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 22 (2013) no. 4, pp. 649-711. doi : 10.5802/afst.1386. http://www.numdam.org/articles/10.5802/afst.1386/
[1] Abreu (M.).— Kähler geometry of toric manifolds in symplectic coordinates, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001). | MR | Zbl
[2] Ambrosio (L.), Gigli (N.), Savar (G.).— Gradient flows in metric spaces and in the space of probability measures. Second edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008. x+334 pp. | MR | Zbl
[3] Artstein-Avidana (S.), Klartag (B.), Milman (V. M.).— The Santal point of a function, and a functional form of the Santal inequality. Mathematika, 51, p. 33-48 (2004). | MR | Zbl
[4] Bakeman (I.J).— Convex analysis and nonlinear geometric elliptic equations. Springer-Verlag, Berlin, (1994). | MR | Zbl
[5] Barthe (F.).— On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134, no. 2, p. 335-361 (1998). | MR | Zbl
[6] Batyrev (V.V.).— Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebr. Geom. 3, p. 493-535 (1994). | MR | Zbl
[7] Berman (R.J).— A thermodynamical formalism for Monge-Ampere equations, Moser-Trudinger inequalities and Kahler-Einstein metrics. arXiv:1011.3976. | MR
[8] Berman (R.J).— K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics. Preprint.
[9] Berman (R.J), Berndtsson (B.).— Moser-Trudinger type inequalities for complex Monge-Ampère operators and Aubin’s “hypothèse fondamentale”. Preprint in 2011 at arXiv:1109.1263.
[10] Berman (R.J), Berndtsson (B.).— The volume of Kähler-Einstein varieties and convex bodies. arXiv:1112.4445.
[11] Berman (R.J), Boucksom, (S.), Guedj (V.), Zeriahi (A.).— A variational approach to complex Monge-Ampère equations. Publications Math. de l’IHES 117, p. 179-245 (2013). | MR
[12] Berman (R.J), Eyssidieux (P.), Boucksom (S.), Guedj (V.), Zeriahi (A.).— Convergence of the Kähler-Ricci flow and the Ricci iteration on Log-Fano varities. arXiv:1111.7158.
[13] Berndtsson (B.).— Curvature of vector bundles associated to holomorphic fibrations. Annals of Math. Vol. 169, p. 531-560 (2009). | MR | Zbl
[14] Berndtsson (B.).— A Brunn-Minkowski type inequality for Fano manifolds and the Bando- Mabuchi uniqueness theorem , arXiv:1103.0923.
[15] Boucksom (S.), Eyssidieux (P.), Guedj (V.), Zeriahi (A.).— Monge-Ampère equations in big cohomology classes. Acta Math. 205, no. 2, p. 199-262 (2010). | MR | Zbl
[16] Brenier (Y.).— Polar factorization and monotone rearrangement of vector valued functions. Communications on pure and applied mathmatics (1991). | MR | Zbl
[17] Burns (D.), Guillemin (Vi.), Lerman (E.).— Kähler metrics on singular toric varieties. Pacific J. Math. 238, no. 1, p. 27-40 (2008). | MR | Zbl
[18] Caffarelli (L. A.).— Interior estimates for solutions of the Monge-Ampère equation. Ann. of Math. (2) 131, no. 1, p. 135-150 (1990). | MR | Zbl
[19] Caffarelli (L. A.).— Some regularity properties of solutions of Monge Ampère equation. Comm. Pure Appl. Math. 44, no. 8-9, p. 965-969 (1991). | MR | Zbl
[20] Caffarelli (L. A.).— A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity. Ann. of Math. (2) 131, no. 1, p. 129-134 (1990). | MR | Zbl
[21] Caffarelli (L. A.).— The regularity of mappings with a convex potential. J. Amer. Math. Soc. 5, no. 1, p. 99-104 (1992). | MR | Zbl
[22] Cao (H.-D.).— Existence of gradient Kähler-Ricci solitons. Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), 1-16, A K Peters, Wellesley, MA, (1996). | MR | Zbl
[23] Campana (F.), Guenancia (H.), Păun (M.).— Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields. arXiv:1104.4879. To appear in Annales Scientifiques de l’ENS.
[24] Cao (H.-D.), Tian, Gang (T.), Zhu (X.).— Kähler-Ricci solitons on compact complex manifolds with C1(M)0. Geom. Funct. Anal. 15, no. 3, p. 697-719 (2005). | MR | Zbl
[25] Cox (D. A.), Little (J. B.), Schenck (H. K.).— Toric varieties. Graduate Studies in Mathematics, 124. American Mathematical Society, Providence, RI (2011). | MR | Zbl
[26] Debarre (O.).— Fano varieties. Higher dimensional varieties and rational points (Budapest, 2001), 93-132, Bolyai Soc. Math. Stud., 12, Springer, Berlin (2003). | MR
[27] Demailly (J.-P.), Dinew (S.), Guedj (V.), Pham (H.H.), Kolodziej (S.), Zeriahi (A.).— Hölder continuous solutions to Monge-Ampère equations. arXiv:1112.1388.
[28] Ding (W.Y), Tian (G.).— Kähler-Einstein metrics and the generalized Futaki invariant. Invent. Math. 110, no. 2, p. 315-335 (1992). | MR | Zbl
[29] Donaldson (S. K.).— Scalar curvature and stability of toric varities. J. Diff. Geom. 62, p. 289-349 (2002). | MR | Zbl
[30] Donaldson (S. K.).— Kähler geometry on toric manifolds, and some other manifolds with large symmetry. Handbook of geometric analysis. No. 1, 29-75, Adv. Lect. Math. (ALM), 7, Int. Press, Somerville, MA (2008). | MR | Zbl
[31] Donaldson (S. K.).— Constant scalar curvature metrics on toric surfaces. Geom. Funct. Anal. 19, no. 1, 83-136 (2009). | MR | Zbl
[32] Donaldson (S. K.).— Kähler metrics with cone singularities along a divisor. arXiv:1102.1196, 2011 - arxiv.org | MR
[33] Edmunds (D. E.), Evans (W. D.).— Spectral Theory and Differential Operators, Oxford University Press, New York (1987). | MR | Zbl
[34] Feldman (M.), Ilmanen (T.), Knopf (D.).— Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons. J. Differential Geom. 65, no. 2, p. 169-209 (2003). | MR | Zbl
[35] Guedj (V.), Zeriahi (A.).— Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15, no. 4, p. 607-639 (2005). | MR | Zbl
[36] Gutierrez (C.E.).— The Monge-Ampère equation. Progress in Nonlinear Differential Equations and their Applications, 44. Birkhäuser Boston, Inc., Boston, MA, 2001. xii+127 pp. ISBN: 0-8176-4177-7 | MR | Zbl
[37] Jeffres (T.D.), Mazzeo (R.), Rubinstein (Y.A).— Kähler-Einstein metrics with edge singularities. Preprint (2011) arXiv:1105.5216.
[38] Legendre (E.).— Toric Kähler-Einstein metrics and convex compact polytopes. arXiv:1112.3239
[39] Kreuzer (M.), Skarke (H.).— PALP: A package for analyzing lattice polytopes with applications to toric geometry. Computer Phys. Comm., 157, p. 87-106 (2004). | MR | Zbl
[40] Li (C.).— Greatest lower bounds on Ricci curvature for toric Fano manifolds. Adv. Math. 226, no. 6, p. 4921-4932 (2011). | MR | Zbl
[41] Li (C.).— Remarks on logarithmic K-stability. arXiv:1104.042
[42] Li (C.), Sun (S.).— Conical Kahler-Einstein metric revisited. arXiv:1207.5011
[43] Li (C.), Xu (C.).— Special test configurations and K-stability of Fano varieties. arXiv:1111.5398
[44] Mabuchi (T.).— Einstein-Kähler forms, Futaki invariants and convex geometry on toric Fano varieties. Osaka J. Math. 24, no. 4, p. 705-737 (1987). | MR | Zbl
[45] McCann (R. J.).— Existence and uniqueness of monotone measure-preserving maps, Duke Math. J. 80, no. 2, p. 309-323 (1995). | MR | Zbl
[46] Odaka (Y.).— The GIT stability of Polarized Varieties via Discrepancy. arXiv:0807.1716. | MR
[47] Odaka (Y.), Sun (S.).— Testing log K-stability by blowing up formalism. arXiv:1112.1353
[48] Phong (D. H.), Song (J.), Sturm (J.), Weinkove (B.).— The Moser-Trudinger inequality on Kähler-Einstein manifolds. Amer. J. Math. 130, no. 4, p. 1067-1085 (2008). | MR | Zbl
[49] Rauch (J.), Taylor (B.A.).— The dirichlet problem for the multidimensional monge-ampere equation, Rocky Mountain J. Math. Volume 7, Number 2, p. 345-364 (1977). | MR | Zbl
[50] Rockafellar (R. T.).— Convex analysis. Reprint of the 1970 original. Princeton Landmarks in Mathematics. Princeton Paperbacks. Princeton University Press, Princeton, NJ (1997). | MR | Zbl
[51] Shi (Y.), Zhu (X.H.).— Kähler-Ricci solitons on toric Fano orbifolds. Math. Z. (to appear). preprint arXiv:math/1102.2764 | Zbl
[52] Song (J.), Tian (G.).— The Kähler-Ricci flow through singularities. Preprint (2009) arXiv:0909.4898.
[53] Song (J.), Wang (X.).— The greatest Ricci lower bound, conical Einstein metrics and the Chern number inequality. arXiv:1207.4839
[54] Szkelyhidi (G.).— Greatest lower bounds on the Ricci curvature of Fano manifolds. Compos. Math. 147, no. 1, p. 319-331 (2011). | MR | Zbl
[55] Troyanov (M.).— Metrics of constant curvature on a sphere with two conical singularities. Differential geometry (Pescola, 1988), 296-306, Lecture Notes in Math., 1410. | MR | Zbl
[56] Tian (G.).— Canonical metrics in Kähler geometry. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2000. vi+101 pp. | MR | Zbl
[57] Tian (G.).— Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130, no. 1, p. 1-37 (1997). | MR | Zbl
[58] Tian (G.), Zhu (X.).— Uniqueness of Kähler-Ricci solitons. Acta Math. 184, no. 2, p. 271-305 (2000). | MR | Zbl
[59] Tian (G.), Zhu (X.).— Convergence of Kähler-Ricci flow. J. Amer. Math. Soc. 20, no. 3, p. 675-699 (2007). | MR | Zbl
[60] Wang (X.), Zhu (X.).— Kähler-Ricci solitons on toric manifolds with positive first Chern class, Advances in Mathematics 188, p. 87-103 (2004). | MR | Zbl
[61] Zhou (B.), Zhu (X.).— K-stability on toric manifolds. Proc. Amer. Math. Soc. 136, no. 9, p. 3301-3307 (2008). | MR | Zbl
[62] Zhou (B.), Zhu (X.).— Relative K-stability and modified K-energy on toric manifolds. Adv. Math. 219, no. 4 (2008). | MR | Zbl
[63] Zhou (B.), Zhu (X.).— Minimizing weak solutions for Calabi’s extremal metrics on toric manifolds. Calc. Var. Partial Differential Equations 32, no. 2, p. 191-217 (2008). | MR | Zbl
Cité par Sources :