On montre que génériquement, l’expansion du corps des réels par une fonction C
We prove that the expansion of the real field by a restricted C
@article{AFST_2010_6_19_3-4_479_0, author = {Le Gal, Olivier}, title = {A generic condition implying o-minimality for restricted {C}$^{\infty }$-functions}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {479--492}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {3-4}, year = {2010}, doi = {10.5802/afst.1252}, zbl = {1215.26012}, mrnumber = {2790804}, language = {en}, url = {https://www.numdam.org/articles/10.5802/afst.1252/} }
TY - JOUR AU - Le Gal, Olivier TI - A generic condition implying o-minimality for restricted C$^{\infty }$-functions JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 SP - 479 EP - 492 VL - 19 IS - 3-4 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - https://www.numdam.org/articles/10.5802/afst.1252/ DO - 10.5802/afst.1252 LA - en ID - AFST_2010_6_19_3-4_479_0 ER -
%0 Journal Article %A Le Gal, Olivier %T A generic condition implying o-minimality for restricted C$^{\infty }$-functions %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2010 %P 479-492 %V 19 %N 3-4 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U https://www.numdam.org/articles/10.5802/afst.1252/ %R 10.5802/afst.1252 %G en %F AFST_2010_6_19_3-4_479_0
Le Gal, Olivier. A generic condition implying o-minimality for restricted C$^{\infty }$-functions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 19 (2010) no. 3-4, pp. 479-492. doi : 10.5802/afst.1252. https://www.numdam.org/articles/10.5802/afst.1252/
[Cos00] Coste (M.).— An introduction to o-minimal geometry. Instituti editoriali e poligrafici in-ternazionali (2000).
[DvdD88] Denef (J.) and van den Dries (L.).— P-adic and real subanalytic sets. Ann. Math., 128:79-138 (1988). | MR | Zbl
[Gab96] Gabrielov (A.).— Complements of subanalytic sets and existential formulas for analytic functions. Invent. math., 125:1-12 (1996). | MR | Zbl
[Gri05] Grigoriev (A.).— On o-minimality of extensions of the real field by restricted generic smooth functions. arXiv.org:math/0506109 (2005).
[LGR08] Le Gal O. and Rolin (J.-P.).— An o-minimal structure which does not admit C
[RSW03] Rolin J.-P., Speissegger (P.), and Wilkie (A. J.).— Quasianalytic Denjoy-Carleman classes and o-minimality. J. Amer. Math. Soc., 16(4):751-777 (electronic) (2003). | MR | Zbl
[vdD98] van den Dries (L.).— Tame topology and o-minimal structures, volume 248 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1998). | MR | Zbl
[Wil99] Wilkie (A.).— A theorem of the complement and some new o-minimal structures. Sel. math., 5:397-421 (1999). | MR | Zbl
- A tetrachotomy for expansions of the real ordered additive group, Selecta Mathematica, Volume 27 (2021) no. 4 | DOI:10.1007/s00029-021-00668-9
- On Local definability of holomorphic functions, The Quarterly Journal of Mathematics (2019) | DOI:10.1093/qmath/haz015
- Transseries and Todorov–Vernaeve’s asymptotic fields, Archive for Mathematical Logic, Volume 53 (2014) no. 1-2, p. 65 | DOI:10.1007/s00153-013-0356-5
- Two remarks on polynomially bounded reducts of the restricted analytic field with exponentiation, Nagoya Mathematical Journal, Volume 215 (2014), p. 225 | DOI:10.1215/00277630-2781221
- An o-minimal structure without mild parameterization, Annals of Pure and Applied Logic, Volume 162 (2011) no. 6, p. 409 | DOI:10.1016/j.apal.2010.11.004
Cité par 5 documents. Sources : Crossref