Continuity of the bending map
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 17 (2008) no. 1, pp. 93-119.

L’application de plissage d’une variété hyperbolique de dimension 3 associe à une métrique hyperbolique convexe cocompacte sur une variété compacte à bord sa lamination géodésique mesurée de plissage. Il a été démontré dans [KeS] et [KaT] que cette application est continue. Dans ce texte, on étudie l’extension de cette application à l’espace des métriques hyperboliques géométriquement finies. On introduit une relation d’équivalence dans l’espace des laminations géodésiques mesurées et on montre que l’application quotient de l’application de plissage est continue.

The bending map of a hyperbolic 3-manifold maps a convex cocompact hyperbolic metric on a 3-manifold with boundary to its bending measured geodesic lamination. As proved in [KeS] and [KaT], this map is continuous. In the present paper we study the extension of this map to the space of geometrically finite hyperbolic metrics. We introduce a relationship on the space of measured geodesic laminations and show that the quotient map obtained from the bending map is continuous.

DOI : 10.5802/afst.1178
Lecuire, Cyril 1

1 Laboratoire Emile Picard, Université Paul Sabatier 118 route de Narbonne, 31062 Toulouse Cedex 9
@article{AFST_2008_6_17_1_93_0,
     author = {Lecuire, Cyril},
     title = {Continuity of the bending map},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {93--119},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 17},
     number = {1},
     year = {2008},
     doi = {10.5802/afst.1178},
     zbl = {1158.53027},
     mrnumber = {2464096},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/afst.1178/}
}
TY  - JOUR
AU  - Lecuire, Cyril
TI  - Continuity of the bending map
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2008
SP  - 93
EP  - 119
VL  - 17
IS  - 1
PB  - Université Paul Sabatier, Institut de mathématiques
PP  - Toulouse
UR  - http://www.numdam.org/articles/10.5802/afst.1178/
DO  - 10.5802/afst.1178
LA  - en
ID  - AFST_2008_6_17_1_93_0
ER  - 
%0 Journal Article
%A Lecuire, Cyril
%T Continuity of the bending map
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2008
%P 93-119
%V 17
%N 1
%I Université Paul Sabatier, Institut de mathématiques
%C Toulouse
%U http://www.numdam.org/articles/10.5802/afst.1178/
%R 10.5802/afst.1178
%G en
%F AFST_2008_6_17_1_93_0
Lecuire, Cyril. Continuity of the bending map. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 17 (2008) no. 1, pp. 93-119. doi : 10.5802/afst.1178. http://www.numdam.org/articles/10.5802/afst.1178/

[AnC] Anderson (J.W.) and Canary (R.D.).— Algebraic limits of Kleinian groups which rearrange the pages of a book, Invent. Math. 126, 205-214 (1996). | MR | Zbl

[BeP] Benedetti (R.) and Petronio (C.).— Lectures on hyperbolic geometry, (1992). | MR | Zbl

[BiS] Birman (J. S.) and Series (C.).— Geodesics with bounded intersection number on surfaces are sparsely distributed, Topology 24, no. 2, 217-225 (1985). | MR | Zbl

[Bo1] Bonahon (F.).— Bouts des variétés hyperboliques de dimension 3, Ann. of Math. (2) 124, 71-158 (1986). | MR | Zbl

[Bo2] Bonahon (F.).— Variations of the boundary of 3-dimensionnal hyperbolic convex cores, J. Diff. Geom. 50, 1-24 (1998). | MR | Zbl

[Bo3] Bonahon (F.).— Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse Math. 5, 233-297 (1996). | Numdam | Zbl

[BoO] Bonahon (F.) and Otal (J.-P.).— Laminations mesurées de plissage des variétés hyperboliques de dimension 3, Ann. Math. (2) 160, No.3, 1013-1055 (2005). | MR | Zbl

[Br] Bridgeman (M.).— Average bending of convex pleated planes in hyperbolic three-space, Invent. Math. 132, 381–391 (1998). | MR | Zbl

[CEG] Canary (R.D.), Epstein (D.B.A.) and Green (P.).— Notes on notes of Thurston, Analytical and Geometrical Aspects of hyperbolic Space, 3-92 (1987). | MR | Zbl

[EpM] Epstein (D.B.A.) and Marden (A.).— Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, Analytical and Geometric Aspects of Hyperbolic Space, 113-253 (1987). | MR | Zbl

[Ga] Gabai (D.).— On the geometric and topological rigidity of hyperbolic 3-manifolds, J. Amer. Math. Soc. 10 , 37-74 (1997). | MR | Zbl

[Jor] Jorgensen (T.).— On discrete groups of Möbius transformations, Amer. J. Math. 98, 739-749 (1976). | MR | Zbl

[KaT] Kamishima (Y.), Tan (S. P.).— Deformation spaces on geometric structures, Aspects of low-dimensional manifolds, Adv. Stud. Pure Math. 20, 263-299 (1992). | MR | Zbl

[KeS] Keen (L.) and Series (C.).— Continuity of convex hull boundaries, Pac. J. Math. 127, 457-519 (1988). | Zbl

[Le1] Lecuire (C.).— Plissage des variété hyperboliques de dimension 3, Inventiones Mathematicae 164, no. 1, 85-141 (2006). | MR | Zbl

[Le2] Lecuire (C.).— Bending map and strong convergence, preprint.

[Ot1] Otal (J.-P.).— Sur la dégénérescence des groupes de Schottky, Duke Math. J. 74, 777-792 (1994). | MR | Zbl

[Ot2] Otal (J.-P.).— Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, Astérisque 235 (1996). | Numdam | Zbl

[Se] Series (C.).— Quasifuchsian groups with small bending, Warwick preprint (2002).

[Ta] Taylor (E.).— Geometric finiteness and the convergence of Kleinian groups, Com. Anal. Geom. 5, 497-533 (1997). | MR | Zbl

[Th] Thurston (W.P.).— The topology and geometry of 3-manifolds, Notes de cours, Université de Princeton (1976-79).

Cité par Sources :