Nous construisons une famille de sous-variétés lagrangiennes dans la sphère complexe qui sont feuilletées par des sphères de dimension . Nous décrivons celles qui sont de plus lagrangiennes spéciales pour la structure de Calabi-Yau induite par la métrique de Stenzel.
We construct a family of Lagrangian submanifolds in the complex sphere which are foliated by -dimensional spheres. Among them we find those which are special Lagrangian with respect to the Calabi-Yau structure induced by the Stenzel metric.
@article{AFST_2007_6_16_2_215_0, author = {Anciaux, Henri}, title = {Special {Lagrangian} submanifolds in the complex sphere}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {215--227}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 16}, number = {2}, year = {2007}, doi = {10.5802/afst.1145}, mrnumber = {2331538}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1145/} }
TY - JOUR AU - Anciaux, Henri TI - Special Lagrangian submanifolds in the complex sphere JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2007 SP - 215 EP - 227 VL - 16 IS - 2 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1145/ DO - 10.5802/afst.1145 LA - en ID - AFST_2007_6_16_2_215_0 ER -
%0 Journal Article %A Anciaux, Henri %T Special Lagrangian submanifolds in the complex sphere %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2007 %P 215-227 %V 16 %N 2 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://www.numdam.org/articles/10.5802/afst.1145/ %R 10.5802/afst.1145 %G en %F AFST_2007_6_16_2_215_0
Anciaux, Henri. Special Lagrangian submanifolds in the complex sphere. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 16 (2007) no. 2, pp. 215-227. doi : 10.5802/afst.1145. http://www.numdam.org/articles/10.5802/afst.1145/
[Au] Audin (M.).— Lagrangian submanifolds, in Symplectic geometry of integrable Hamiltonian systems, M. Audin, A. Cannas da Silva, E. Lerman, Advanced courses in Mathematics CRM Barcelona, Birkhäuser (2003). | MR
[Br] Bryant (R.).— Some examples of special Lagrangian tori, Adv. Theor. Math. Phys. 3, no. 1, p. 83-90 (1999). | MR | Zbl
[CBLP] Cvetič (M.), Gibbons (G. W.), Lü (H.) & Pope (C. N.).— Ricci-flat metrics, harmonic forms and brane resolutions, Comm. Math. Phys. 232, no. 3, p. 457-500 (2003). | MR | Zbl
[CMU] Castro (I.), Montealegre (C. R.) & Urbano (F.).— Minimal Lagrangian submanifolds in the complex hyperbolic space, Illinois J. Math. 46, no. 3, p. 695-721 (2002). | MR | Zbl
[CU1] Castro (I.), Urbano (F.).— On a Minimal Lagrangian Submanifold of Foliated by Spheres, Mich. Math. J., 46, p. 71-82 (1999). | MR | Zbl
[CU2] Castro (I.), Urbano (F.).— On a new construction of special Lagrangian immersions in complex Euclidean space, Q. J. Math. 55, no. 3, p. 253-265 (2004). | MR | Zbl
[Ha] Haskins (M.).— Special Lagrangian cones, Amer. J. Math. 126, no. 4, p. 845-871 (2004). | MR | Zbl
[HL] Harvey (R.), Lawson (H. B.).— Calibrated geometries, Acta Mathematica, 148, p. 47-157 (1982). | MR | Zbl
[Jo1] Joyce (D.).— -invariant special Lagrangian 3-folds in and special Lagrangian fibrations. Turkish J. Math. 27, no. 1, p. 99-114 (2003). | MR | Zbl
[Jo2] Joyce (D.).— Riemannian holonomy groups and calibrated geometry, in Calabi-Yau manifolds and related geometries. Lectures from the Summer School held in Nordfjordeid, June 2001. Universitext. Springer-Verlag, Berlin (2003). | MR | Zbl
[Oh] Oh (Y.-G.).— Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds, Invent. Math. 101, p. 501-519 (1990). | MR | Zbl
[St] Stenzel (M.).— Ricci-flat metrics on the complexification of a compact rank one symmetric space, Manuscripta Math. 80, no. 2, p. 151-163 (1993). | MR | Zbl
[SYZ] Strominger (A.), Yau (S.-T.) & Zaslow (E.).— Mirror symmetry is T-duality, Nuclear Physics, B479, hep-th/9606040 (1996). | MR | Zbl
[Y] Yau (S.-T.).— On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equations I, Comm. Pure Appl. Math. 31, p. 339-411 (1978). | MR | Zbl
Cité par Sources :