Cet article est une synthèse de résultats et idées classiques ou nouveaux sur la longue mémoire, les changements d’échelles et l’autosimilarité, à la fois dans le cas de queues de distributions lourdes ou légères.
This paper is a survey of both classical and new results and ideas on long memory, scaling and self-similarity, both in the light-tailed and heavy-tailed cases.
@article{AFST_2006_6_15_1_107_0, author = {Samorodnitsky, Gennady}, title = {Long memory and self-similar processes}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {107--123}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 15}, number = {1}, year = {2006}, doi = {10.5802/afst.1115}, mrnumber = {2225749}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1115/} }
TY - JOUR AU - Samorodnitsky, Gennady TI - Long memory and self-similar processes JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2006 SP - 107 EP - 123 VL - 15 IS - 1 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1115/ DO - 10.5802/afst.1115 LA - en ID - AFST_2006_6_15_1_107_0 ER -
%0 Journal Article %A Samorodnitsky, Gennady %T Long memory and self-similar processes %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2006 %P 107-123 %V 15 %N 1 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://www.numdam.org/articles/10.5802/afst.1115/ %R 10.5802/afst.1115 %G en %F AFST_2006_6_15_1_107_0
Samorodnitsky, Gennady. Long memory and self-similar processes. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 15 (2006) no. 1, pp. 107-123. doi : 10.5802/afst.1115. http://www.numdam.org/articles/10.5802/afst.1115/
[Astrauskas et al. (1991)] The asymptotic dependence structure of the linear fractional Lévy motion, Lietuvos Matematikos Rinkinys (Lithuanian Mathematical Journal), Volume 31 (1991), pp. 1-28 | MR | Zbl
[Beran (1994)] Statistics for Long-Memory Processes, Chapman and Hall, New York, 1994 | MR | Zbl
[Cohen and Samorodnitsky (2005)] Random rewards, Fractional Brownian local times and stable self-similar processes (2005) (Preprint)
[Embrechts and Maejima (2002)] Selfsimilar Processes, Princeton University Press, Princeton and Oxford, 2002 | MR | Zbl
[Hurst (1951)] Long-term storage capacity of reservoirs, Transactions of the American Society of Civil Engineers, Volume 116 (1951), pp. 770-808
[Krengel (1985)] Ergodic Theorems, de Gruyter Studies in Mathematics, 6, Walter de Gruyter & Co., Berlin, New York, 1985 | MR | Zbl
[Mandelbrot (1965)] Une classe de processus stochastiques homothétiques à soi; application à loi climatologique de H.E. Hurst, Comptes Rendus Acad. Sci. Paris, Volume 240 (1965), pp. 3274-3277 | MR | Zbl
[Mandelbrot (1983)] The Fractal Geometry of Nature, W.H. Freeman and Co., San Francisco, 1983 | MR | Zbl
[Mandelbrot and Van Ness (1968)] Fractional Brownian motions, fractional noises and applications, SIAM Review, Volume 10 (1968), pp. 422-437 | MR | Zbl
[Mandelbrot and Wallis (1968)] Noah, Joseph and operational hydrology, Water Resources Research, Volume 4 (1968), pp. 909-918
[Mandelbrot and Wallis (1969)] Robustness of the rescaled range R/S in the measurement of noncyclic long-run statistical dependence, Water Resour. Res., Volume 5 (1969), pp. 967-988
[Mikosch and Samorodnitsky (2000)] Ruin probability with claims modeled by a stationary ergodic stable process, Annals of Probability, Volume 28 (2000), pp. 1814-1851 | MR | Zbl
[Nolan (1988)] Path properties of index- stable fields, Annals of Probability, Volume 16 (1988), pp. 1596-1607 | MR | Zbl
[Pipiras and Taqqu (2002a)] Decomposition of self-similar stable mixing moving averages, Probability Theory and Related Fields, Volume 123 (2002), pp. 412-452 | MR | Zbl
[Pipiras and Taqqu (2002b)] The structure of self-similar stable mixing moving averages, Annals of Probability, Volume 30 (2002), pp. 898-932 | MR | Zbl
[Resnick (1987)] Extreme values, regular variation and point processes, Springer-Verlag, New York, 1987 | MR | Zbl
[Resnick et al. (1999] How misleading can sample ACF’s of stable MA’s be? (Very!), Annals of Applied Probability, Volume 9 (1999), pp. 797-817 | MR | Zbl
[Resnick et al. (2000)] Growth rates of sample covariances of stationary symmetric -stable processes associated with null recurrent Markov chains, Stochastic Processes and Their Applications, Volume 85 (2000), pp. 321-339 | MR | Zbl
[Rosiński (1995)] On the structure of stationary stable processes, The Annals of Probability, Volume 23 (1995), pp. 1163-1187 | MR | Zbl
[Rosiński, Samorodnitsky (1996)] Classes of mixing stable processes, Bernoulli, Volume 2 (1996), p. 3655-378 | MR | Zbl
[Rosiński, Żak (1996)] Simple conditions for mixing of infinitely divisible processes, Stochastic Processes and Their Applications, Volume 61 (1996), pp. 277-288 | MR | Zbl
[Samorodnitsky (2002)] Long range dependence, heavy tails and rare events, MaPhySto (Lecture Notes), Centre for Mathematical Physics and Stochastics, Aarhus, 2002
[Samorodnitsky (2004)] Extreme value theory, ergodic theory, and the boundary between short memory and long memory for stationary stable processes, Annals of Probability, Volume 32 (2004), pp. 1438-1468 | MR | Zbl
[Samorodnitsky (2005)] Null flows, positive flows and the structure of stationary symmetric stable processes, Annals of Probability, Volume 33 (2005), pp. 1782-1803 | MR | Zbl
[Samorodnitsky and Taqqu (1990)] -self-similar processes with stationary increments, Journal of Multivariate Analysis, Volume 35 (1990), pp. 308-313 | MR | Zbl
[Samorodnitsky and Taqqu (1994)] Stable Non-Gaussian Random Processes, Chapman and Hall, New York, 1994 | MR | Zbl
Cité par Sources :